全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS ONE  2014 

180,000 Years of Climate Change in Europe: Avifaunal Responses and Vegetation Implications

DOI: 10.1371/journal.pone.0094021

Full-Text   Cite this paper   Add to My Lib

Abstract:

Providing an underutilized source of information for paleoenvironmental reconstructions, birds are rarely used to infer paleoenvironments despite their well-known ecology and extensive Quaternary fossil record. Here, we use the avian fossil record to investigate how Western Palearctic bird assemblages and species ranges have changed across the latter part of the Pleistocene, with focus on the links to climate and the implications for vegetation structure. As a key issue we address the full-glacial presence of trees in Europe north of the Mediterranean region, a widely debated issue with evidence for and against emerging from several research fields and data sources. We compiled and analyzed a database of bird fossil occurrences from archaeological sites throughout the Western Palearctic and spanning the Saalian-Eemian-Weichselian stages, i.e. 190,000–10,000 years BP. In general, cold and dry-adapted species dominated these late Middle Pleistocene and Late Pleistocene fossil assemblages, with clear shifts of northern species southwards during glacials, as well as northwards and westwards shifts of open-vegetation species from the south and east, respectively and downwards shifts of alpine species. A direct link to climate was clear in Northwestern Europe. However, in general, bird assemblages more strongly reflected vegetation changes, underscoring their usefulness for inferring the vegetation structure of past landscapes. Forest-adapted birds were found in continuous high proportions throughout the study period, providing support for the presence of trees north of the Alps, even during full-glacial stages. Furthermore, the results suggest forest-dominated but partially open Eemian landscapes in the Western Palearctic, including the Northwestern European subregion.

References

[1]  Huntley B, Webb T (1989) Migration: species' response to climatic variations caused by changes in the Earth's orbit. J Biogeogr 16: 5–19. doi: 10.2307/2845307
[2]  Jackson ST, Overpeck JT, Webb-III T, Keattch SE, Anderson KH (1997) Mapped plant-macrofossil and pollen records of Late Quaternary vegetation change in Eastern North America. Quat Sci Rev 16: 1–70. doi: 10.1016/s0277-3791(96)00047-9
[3]  Hughes L (2000) Biological consequences of global warming: is the signal already apparent? Trends Ecol Evol 15: 56–61. doi: 10.1016/s0169-5347(99)01764-4
[4]  Walther G-R, Burga CA, Edwards PJ (2001) “Fingerprints” of climate change - adapted behavior and shifting species ranges. New York: Kluwer Academic/Plenum Publishers.
[5]  McCarty JP (2001) Ecological consequences of recent climate change. Conserv Biol 15: 320–331. doi: 10.1046/j.1523-1739.2001.015002320.x
[6]  Walther G-R, Post E, Convey P, Menzel A, Parmesan C, et al. (2002) Ecological responses to recent climate change. Nature 416: 389–395. doi: 10.1038/416389a
[7]  Abellán P, Benetti CJ, Angus RB, Ribera I (2010) A review of quaternary range shifts in European aquatic coleoptera. Glob Ecol Biogeogr 20: 87–100. doi: 10.1111/j.1466-8238.2010.00572.x
[8]  Davis MB, Shaw RG (2001) Range shifts and adaptive responses to Quaternary climate change. Science 292: 673–679. doi: 10.1126/science.292.5517.673
[9]  Graham RW, Grimm EC (1990) Effects of global climate change on the patterns of terrestrial biological communities. Trends Ecol Evol 5: 289–292. doi: 10.1016/0169-5347(90)90083-p
[10]  Svenning J-C, Sandel B (2013) Disequilibrium vegetation dynamics under future climate change. Am J Bot 100: 1–21. doi: 10.3732/ajb.1200469
[11]  Bowen DQ (1978) Quaternary geology: a stratigraphic framework for multidisciplinary work. Oxford: Pergamon Press.
[12]  Johnson SJ, Vinther BM (2007) Greenland stable isotopes. In: Elias AS, editor. Encyclopedia of Quaternary Science. Elsevier Ltd., Vol. 26. pp. 1250–1258.
[13]  Bassinot FC (2007) Oxygen isotope stratigraphy of the oceans. In: Elias AS, editor. Encyclopedia of Quaternary Science. Elsevier Ltd., Vol. 18. pp. 1740–1748.
[14]  Finlayson C (2011) Avian Survivors: the history and biogeography of Palearctic birds. London: Bloomsbury Publishing Plc.
[15]  Prentice IC, Jolly D (2000) Mid-Holocene and glacial-maximum vegetation geography of the northern continents and Africa. J Biogeogr 27: 507–519. doi: 10.1046/j.1365-2699.2000.00425.x
[16]  Parmesan C, Yohe G (2003) A globally coherent fingerprint of climate change impacts across natural systems. Nature 421: 37–42. doi: 10.1038/nature01286
[17]  Zagwijn WH (1996) An analysis of Eemian climate in western and central Europe. Quartenary Sci Rev 15: 451–469. doi: 10.1016/0277-3791(96)00011-x
[18]  Behre K-E (1989) Biostratisgraphy of the last glacial period in Europe. Quartenary Sci Rev 8: 25–44.
[19]  Shackleton NJ, Sánchez-Go?i MF, Pailler D, Lancelot Y (2003) Marine isotope substage 5e and the Eemian Interglacial. Glob Planet Change 36: 151–155. doi: 10.1016/s0921-8181(02)00181-9
[20]  Van Andel TH, Tzedakis PC (1996) Palaeolithic landscapes of Europe and environs, 150,000–25,000 years ago: an overview. Quartenary Sci Rev 15: 481–500. doi: 10.1016/0277-3791(96)00028-5
[21]  Svenning J-C (2002) A review of natural vegetation openness in north-western Europe. Biol Conserv 104: 133–148. doi: 10.1016/s0006-3207(01)00162-8
[22]  Birks HJB, Willis KJ (2008) Alpines, trees, and refugia in Europe. Plant Ecol Divers 1: 147–160. doi: 10.1080/17550870802349146
[23]  Taberlet P, Cheddadi R (2002) Quaternary refugia and persistence of biodiversity. Science (80-) 297: 2009–2010. doi: 10.1126/science.297.5589.2009
[24]  Bennett KD, Tzedakis PC, Willis KJ (1991) Quaternary refugia of north European trees. J Biogeogr 18: 103–115. doi: 10.2307/2845248
[25]  Stewart JR, Lister AM, Barnes I, Dalén L (2010) Refugia revisited: individualistic responses of species in space and time. Procedings R Soc B Biol Sci 277: 661–671. doi: 10.1098/rspb.2009.1272
[26]  Huntley B (1988) Glacial and Holocene vegetation history -20 ky to present: Europe. Vegetation History. Dordrecht, The Netherlands: Kluwer Academic Publishers.
[27]  Hewitt G (2000) The genetic legacy of the Quaternary ice ages. Nature 405: 907–913. doi: 10.1038/35016000
[28]  Taberlet P, Fumagalli L, Wust-Saucy A-G, Cosson J-F (1998) Comparative phylogeography and postglacial colonization. Mol Ecol 7: 453–464. doi: 10.1046/j.1365-294x.1998.00289.x
[29]  Willis KJ, Rudner E, Sümegi P (2000) The full-glacial forests of central and southeastern Europe. Quat Res 53: 203–213. doi: 10.1006/qres.1999.2119
[30]  Willis KJ, van Andel TH (2004) Trees or no trees? The environments of central and eastern Europe during the last glaciation. Quat Sci Rev 23: 2369–2387. doi: 10.1016/j.quascirev.2004.06.002
[31]  Binney HA, Willis KJ, Edwards ME, Bhagwat SA, Anderson PM, et al. (2009) The distribution of late-quaternary woody taxa in northern Eurasia: evidence from a new macrofossil database. Quat Sci Rev 28: 2445–2464. doi: 10.1016/j.quascirev.2009.04.016
[32]  Stewart JR, van Kolfschoten T, Markova A, Musil R (2003) The mammalian faunas of Europe during oxygen isotope stage Three. Neanderthals and Modern Humans in the European Landscape during the Last Glaciation. Cambridge: McDonald Institute for Archeological Research, University of Cambridge. pp. 103–130.
[33]  Petit RJ, Aguinagalde I, de Beaulieu J-L, Bittkau C, Brewer S, et al. (2003) Glacial refugia: hotspots but not melting pots of genetic diversity. Science (80-) 300: 1563–1565. doi: 10.1126/science.1083264
[34]  Schmitt T (2007) Molecular biogeography of Europe: pleistocene cycles and postglacial trends. Front Zool 4.
[35]  Svenning J-C, Normand S, Kageyama M (2008) Glacial refugia of temperate trees in Europe: insights from species distribution modelling. J Ecol 96: 1117–1127. doi: 10.1111/j.1365-2745.2008.01422.x
[36]  Allen JRM, Hickler T, Singarayer JS, Sykes MT, Valdes PJ, et al. (2010) Last glacial vegetation of northern Eurasia. Quat Sci Rev 29: 2604–2618. doi: 10.1016/j.quascirev.2010.05.031
[37]  Stewart JR, Lister AM (2001) Cryptic northern refugia and the origins of the modern biota. Trends Ecol Evol 16: 608–613. doi: 10.1016/s0169-5347(01)02338-2
[38]  Tomek T, Bocheński ZM, Socha P (2012) Continuous 300,000-year fossil record: changes in the ornithofauna of Bi?nik Cave, Poland. Palaeontol Electron 15: 1–20.
[39]  Tomek T, Boche?ski Z (2005) Weichselian and Holocene bird remains from Komarowa Cave, Central Poland. Acta Zool cracoviensia 48A: 43–65. doi: 10.3409/173491505783995743
[40]  Bedetti C, Pavia M (2007) Reinterpretation of the late pleistocene Ingaro deposit based on the fossil bird associations (Apulia, south-eastern Italy). Riv Ital di Paleontol e Stratigr 113: 487–507.
[41]  Boche?ski Z, Tomek T (2004) Bird remains from a rock-shelter in Krucza Skala (Central Poland). Acta Zool cracoviensia 47: 27–47.
[42]  Boche?ski Z (2002) Bird remains from Oblazowa – zoogeographical and evolutionary remarks. Acta Zool cracoviensia 45: 239–252.
[43]  Finlayson G, Finlayson C, Giles Pacheco F, Rodriguez Vidal J, Carrión JS, et al. (2008) Caves as archives of ecological and climatic changes in the Pleistocene—The case of Gorham's cave, Gibraltar. Quat Int 181: 55–63. doi: 10.1016/j.quaint.2007.01.009
[44]  Sánchez-Marco A (2004) Avian zoogeographical patterns during the Quartenary in the Mediterranean region and paleoclimatic interpretation. Ardeola 51: 91–132.
[45]  Sánchez-Marco A (1999) Implications of the avian fauna for paleoecology in the Early Pleistocene of the Iberian Peninsula. J Hum Evol 37: 375–388. doi: 10.1006/jhev.1999.0345
[46]  Finlayson C, Carrión J, Brown K, Finlayson G, Sánchez-Marco A, et al. (2011) The Homo habitat niche: using the avian fossil record to depict ecological characteristics of palaeolithic Eurasian hominins. Quat Sci Rev 30: 1525–1532. doi: 10.1016/j.quascirev.2011.01.010
[47]  Tyrberg T (1999) Seabirds and Late Pleistocene marine environments in the northeast Atlantic and the Mediterranean. Smithson Contrib to Paleobiol 89: 139–157.
[48]  Baird RF (1989) Fossil bird assemblages from Australian caves: precise indicators of late Quaternary environments? Palaeogeogr Palaeoclimatol Palaeoecol 69: 241–244. doi: 10.1016/0031-0182(89)90167-3
[49]  Yalden DW, Albarella U (2009) The bird in the hand. The History of British Birds. Oxford, New York: Oxford University Press.
[50]  Parmesan C (2001) Detection of range shifts: general methodological issues and case studies of butterflies. “Fingerprints” of Climate Change: Adapted Behaviour and Shifting Species Ranges. New York: Kluwer Academic/Plenum Publishers. pp. 57–76.
[51]  Coope GR, Lemdahl G (1995) Rapid communication regional differences in the Late Glacial climate of northern Europe based on coleopteran analysis. J Quat Sci 10: 391–395. doi: 10.1002/jqs.3390100409
[52]  Tyrberg T (1998) Pleistocene birds of the Palearctic: a catalogue. Cambridge: Nuttall Ornithological Club.
[53]  Tyrberg T (2008) Pleistocene birds of the Palearctic. Available: http://web.telia.com/~u11502098/pleistoc?ene.html. Accessed 2013 March 6.
[54]  Natural Earth (n.d.) Free vector and raster map data @ naturalearthdata.com. Available: http://www.naturalearthdata.com/. Accessed 2013 Feb 25.
[55]  Danzeglocke U (n.d.) CalPal the cologne radiocarbon calibration & palaeoclimate research package. Available: http://www.calpal-online.de/. Accessed 2013 Jan 25.
[56]  BirdLife International (2013) IUCN red list for birds. Available: http://www.birdlife.org. Accessed 2013 July 1.
[57]  BirdLife International and NatureServe (2012) Bird species distribution maps of the world. BirdLife International, Cambridge, UK and NatureServe, Arlington, USA.
[58]  Crick HQP (2004) The impact of climate change on birds. Ibis (Lond 1859) 146: 48–56. doi: 10.1111/j.1474-919x.2004.00327.x
[59]  Tingley MW, Monahan WB, Beissinger SR, Moritz C (2009) Birds track their grinnellian niche through a century of climate change. Proc Natl Acad Sci U S A 106: 19637–19643. doi: 10.1073/pnas.0901562106
[60]  Thomas CD, Lennon JJ (1999) Birds extend their ranges northwards. Nature 399: 213.
[61]  Bell FG (1969) the occurrence of southern, steppe and halophyte elements in Weichselian (last-glacial) floras from southern Britain. New Phytol 68: 913–922. doi: 10.1111/j.1469-8137.1969.tb06490.x
[62]  Coope GR (1973) Tibetan species of Dung Beetle from Late Pleistocene deposits in England. Nature 245: 335–336. doi: 10.1038/245335a0
[63]  Zimina RP, Gerasimov IP (1973) The periglacial expansion of marmots (Marmota) in middle Europe during Late Pleistocene. J Mammal 54: 327–340. doi: 10.2307/1379120
[64]  Dalén L, Fuglei E, Hersteinsson P, Kapel CMO, Roth JD, et al. (2005) Population history and genetic structure of a circumpolar species: the arctic fox. Biol J Linn Soc 84: 79–89. doi: 10.1111/j.1095-8312.2005.00415.x
[65]  Flagstad ?, R?ed KH (2003) Refugial origins of reindeer (Rangifer tarandus L.) inferred from mitochondrial DNA sequences. Evolution (N Y) 57: 658–670. doi: 10.1554/0014-3820(2003)057[0658:roorrt]2.0.co;2
[66]  Steadman DW, Miller NG (1987) California Condor associated with Spruce-Jack Pine woodland in the Late Pleistocene of New York. Quat Reseach 28: 415–426. doi: 10.1016/0033-5894(87)90008-1
[67]  Chamberlain CP, Waldbauer JR, Fox-Dobbs K, Newsome SD, Koch PL, et al. (2005) Pleistocene to recent dietary shifts in California condors. Proc Natl Acad Sci U S A 102: 16707–16711. doi: 10.1073/pnas.0508529102
[68]  Fox-Dobbs K, Stidham TA, Bowen GJ, Emslie SD, Koch PL (2006) Dietary controls on extinction versus survival among avian megafauna in the Late Pleistocene. Geology 34: 685–688. doi: 10.1130/g22571.1
[69]  Lyons SK (2003) A Quantitative assessment of the range shifts of Pleistocene mammals. J Mammal 84: 385–402. doi: 10.1644/1545-1542(2003)084<0385:aqaotr>2.0.co;2
[70]  Bennett K, Provan J (2008) What do we mean by “refugia”? Quat Sci Rev 27: 2449–2455. doi: 10.1016/j.quascirev.2008.08.019
[71]  Parmesan C (2006) Ecological and evolutionary responses to recent climate change. Annu Rev Ecol Evol Syst 37: 637–669. doi: 10.1146/annurev.ecolsys.37.091305.110100
[72]  Markova AK, Puzachenko AY, van Kolfschoten T (2010) The north Eurasian mammal assemblages during the end of MIS 3 (Brianskian–Late Karginian–Denekamp Interstadial). Quat Int 212: 149–158. doi: 10.1016/j.quaint.2009.02.010
[73]  Jackson ST, Williams JW (2004) Modern analogs in Quaternary paleoecology: here today, gone yesterday, gone tomorrow? Annu Rev Earth Planet Sci 32: 495–537. doi: 10.1146/annurev.earth.32.101802.120435
[74]  Williams JW, Jackson ST (2007) Novel climates, no-analog communities, and ecological surprises. Front Ecol Environ 5: 475–482. doi: 10.1890/070037
[75]  Chase PG, Debénath A, Dibble HL, McPherron SP, Schwarcz HP, et al. (2007) New dates for the Fontéchevade (Charente, France) Homo remains. J Hum Evol 52: 217–221. doi: 10.1016/j.jhevol.2006.09.003
[76]  Rodríguez J (2006) Structural continuity and multiple alternative stable states in Middle Pleistocene European mammalian communities. Palaeogeogr Palaeoclimatol Palaeoecol 239: 355–373. doi: 10.1016/j.palaeo.2006.02.001
[77]  Coope GR (2002) Changes in the thermal climate in Northwestern Europe during marine oxygen isotope stage 3, estimated from fossil insect assemblages. Quat Res 57: 401–408. doi: 10.1006/qres.2002.2332
[78]  Roucoux K, Margari V, Lawson IT, Tzedakis PC (2010) Vegetation responses to climate changes during the penultimate glacial period (marine isotope stage 6) in southern Europe. Geophys Res Abstr 12: 15216. doi: 10.1002/jqs.1483
[79]  Huntley B, Alfano MJ, Allen JRM, Pollard D, Tzedakis PC, et al. (2003) European vegetation during marine oxygen isotope stage-3. Quat Res 59: 195–212. doi: 10.1016/s0033-5894(02)00016-9
[80]  Watts WA (1988) Late-tertiary and Pleistocene vegetation history – 20 My to 20 ky: Europe. Vegetation History. Dordrecht, The Netherlands: Kluwer Academic Publishers.
[81]  Zagwijn WH (1989) Vegetation and climate during warmer intervals in the Late Pleistocene of western and central Europe. Quat Int 3–4: 57–67. doi: 10.1016/1040-6182(89)90074-8
[82]  Kolstrup E (1992) Danish pollen records radiocarbon-dated to between 50,000 and 57,000 yr BP. J Quat Sci 7: 163–172. doi: 10.1002/jqs.3390070207
[83]  Ehlers J, Astakhov V, Gibbard PL, Mangerud J, Svendsen JI (2007) Late Pleistocene glaciations in Europe. In: Elias AS, editor. Encyclopedia of Quaternary Science. Elsevier Ltd. pp. 1085–1095.
[84]  Parducci L, J?rgensen T, Tollefsrud MM, Elverland E, Alm T, et al. (2012) Glacial survival of boreal trees in northern Scandinavia. Science 335: 1083–1086. doi: 10.1126/science.1216043
[85]  Hoek WZ (1997) Late-glacial and early Holocene climatic events and chronology of vegetation development in the Netherlands. Veg Hist Archaeobot 6: 197–213. doi: 10.1007/bf01370442
[86]  Walker MJC, Bohncke SJP, Coope GR, O'Connell M, Usinger H, et al. (1994) The Devensian/Weichselian Late-glacial in northwest Europe (Ireland, Britain, north Belgium, The Netherlands, northwest Germany). J Quat Sci 9: 109–118. doi: 10.1002/jqs.3390090204
[87]  Bittmann F (2006) Reconstruction of the Aller?d vegetation of the Neuwied Basin, western Germany, and its surroundings at 12,900 cal B.P. Veg Hist Archaeobot. 16: 139–156. doi: 10.1007/s00334-006-0082-6
[88]  Varela S, Lobo JM, Hortal J (2011) Using species distribution models in paleobiogeography: a matter of data, predictors and concepts. Palaeogeogr Palaeoclimatol Palaeoecol 310: 451–463. doi: 10.1016/j.palaeo.2011.07.021
[89]  Taylor RE, Aitken MJ (1997) Chronometric dating in archeology. New York: Plenum Press.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133