全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS ONE  2014 

Experimental Investigation of the Cd-Pr Phase Diagram

DOI: 10.1371/journal.pone.0094025

Full-Text   Cite this paper   Add to My Lib

Abstract:

The complete Cd-Pr equilibrium phase diagram was investigated with a combination of powder-XRD, SEM and DTA. All intermetallic compounds within this system, already reported in literature, could be confirmed: CdPr, Cd2Pr, Cd3Pr, Cd45Pr11, Cd58Pr13, Cd6Pr and Cd11Pr. The corresponding phase boundaries were determined at distinct temperatures. The homogeneity range of the high-temperature allotropic modification of Pr could be determined precisely and a limited solubility of 22.1 at.% Cd was derived. Additionally, single-crystal X-ray diffraction was employed to investigate structural details of Cd2Pr; it is isotypic to the AlB2-type structure with a z value of the Cd site of 0.5. DTA results of alloys located in the adjacent two-phase fields of Cd2Pr suggested a phase transformation between 893 and 930°C. For the phase Cd3Pr it was found that the lattice parameter a changes linearly with increasing Cd content, following Vegard’s rule. The corresponding defect mechanism could be evaluated from structural data collected with single-crystal XRD. Introduction of a significant amount of vacancies on the Pr site and the reduction in symmetry of one Cd position (8c to 32f) resulted in a noticeable decrease of all R-values.

References

[1]  Olander D (2009) Nuclear fuels - Present and future. J. Nuclear Mater. 389: 1–22. doi: 10.1016/j.jnucmat.2009.01.297
[2]  Johnson I (1988) The Thermodynamics of Pyromchemical Processes for Liquid Metal Reactor Fuel Cycles. J. Nuclear Mater. 154: 169–180. doi: 10.1016/0022-3115(88)90131-6
[3]  Ackerman JP (1991) Chemical Basis for Pyrochemical Reprocessing of Nuclear-Fuel. Ind. Eng. Chem. Res. 30: 141–145. doi: 10.1021/ie00049a022
[4]  Laidler JJ, Battles JE, Miller WE, Ackerman JP, Carls EL (1997) Development of Pyroprocessing Technology. Progr. Nuclear Energy 31 no. 1/2: 131–140. doi: 10.1016/0149-1970(96)00007-8
[5]  Yamana H, Wakayama N, Souda N, Moriyama H (2000) Systematics of the thermodynamic properties of trivalent f-elements in a pyrometallurgical bi-phase extraction system. J. Nuclear Mater 278: 37–47. doi: 10.1016/s0022-3115(99)00228-7
[6]  Moriyama H, Seshimo S, Moritani K, Ito Y, Mitsugashira T (1994) Reductive Extraction Behavior of Actinide and Lanthanide Elements in Molten-Salt and Liquid-Metal Binary Phase Systems. J. Alloys Comp. 213: 354–359. doi: 10.1016/0925-8388(94)90930-x
[7]  Moriyama H, Yamana H, Nishikawa S, Shibata S, Wakayama N, et al. (1998) Thermodynamics of reductive extraction of actinides and lanthanides from molten chloride salt into liquid metal. J. Alloys Comp. 271: 587–591. doi: 10.1016/s0925-8388(98)00165-0
[8]  Conocar O, Douyere N, Glatz J-P, Lacquement J, Malmbeck R, et al. (2006) Promising pyrochemical actinide/lanthanide separation processes using aluminum. Nuclear Sci. Eng. 153: 253–261.
[9]  Kurata M, Sakamura Y, Hijikata T, Kinoshita K (1995) Distribution behavior of uranium, neptunium, rare-earth elements (Y,La,Ce,Nd,Sm,Eu,Gd) and alkaline-earth metals (Sr,Ba) between molten LiCl-KCl eutectic salt and liquid cadmium or bismuth. J. Nuclear Mater. 227: 110–121. doi: 10.1016/0022-3115(95)00146-8
[10]  Sko?yszewska-Kühberger B, Reichmann TL, Ganesan R, Ipser H (2013) Thermodynamic study of the cerium-cadmium system. CALPHAD 10.1016/j.calphad.2013.07.005.
[11]  Reichmann TL, Ipser H (2013) Thermochemical Investigations in the System Cadmium-Praseodymium Relevant for Pyrometallurgical Fuel Reprocessing Metall. Mater. Trans. A DOI:10.1007/s11661-013-2065-4.
[12]  Johnson I, Anderson KE, Blomquist RA (1966) Partial Constitutional Diagrams for Cd-La, Cd-Ce, Cd-Pr, Cd-Nd and Cd-Sm Systems. Trans. ASM 59: 352–355.
[13]  Gschneidner KA Jr, Calderwood FW (1988) The Cd-Pr system. Bull. Alloy Phase Diag. 9: 130–132. doi: 10.1007/bf02890545
[14]  Veleckis E, Van Deventer E (1964) ANL-6925, Semi-Annual Report, Argone National Lab.
[15]  Kurata M, Sakamura Y (2001) Thermodynamic assessment of systems of actinide or rare earth with Cd. J. Phase Equilibria 22 no. 3: 232–240. doi: 10.1361/105497101770338707
[16]  Iandelli A, Ferro R (1954) Alloys of Cadmium with Lanthanum, Cerium and Praseodymium. Gazz. Chim. Ital. 84: 463–478.
[17]  Johnson I, Schablaske RV, Tani BS, Anderson K (1964) CeCd6 -Type Rare Earth-Cadmium Alloys. Trans. Met. Soc. AIME 230: 1485–1487.
[18]  Bruzzone G, Fornasini ML, Merlo F (1973) Rare earth intermediate phases with cadmium. J. Less-Common Met. 30: 361–375. doi: 10.1016/0022-5088(73)90147-1
[19]  Iandelli A, Palenzona A (1968) On Occurrence of MX2 Phases of Rare Earths with Ib, IIb and IIIb Group Elements and Their Crystal Structures. J. Less-Common Met. 15: 273–284. doi: 10.1016/0022-5088(68)90186-0
[20]  Laube E, Kusma JB (1964) über einige Y- und Dy-haltige Legierungsphasen. Monatsh. Chem. 95: 1504–1513. doi: 10.1007/bf00901705
[21]  Kusma JB, Uhryn NS (1966) Crystal structures of some compounds of rare earth metals with cadmium. Dopovidi Akademii Nauk Ukrains’koi RSR: 1025–1027.
[22]  Mulokozi AM (1977) Nature of bonding in Rare-Earth compounds RX2 with AlB2-type or closely related structures I: Compounds RCd2 with a deformed AlB2 structure and influence of F-bonding. J. Less-Common Met. 53: 205–210. doi: 10.1016/0022-5088(77)90105-9
[23]  Hoffmann RD, P?ttgen R (2001) AlB2-related intermetallic compounds - a comprehensive view based on group-subgroup relations. Z. Kristallogr. 216: 127–145. doi: 10.1524/zkri.216.3.127.20327
[24]  Tang J, Gschneidner KA Jr (1989) Searching for new heavy fermion materials in cerium intermetallic compounds. J. Less-Common Met. 149: 341–347. doi: 10.1016/0022-5088(89)90509-2
[25]  Koester W, Meixner J (1965) The constitution of the systems of Europium with Silver, Cadmium and Indium and the Cadmium-Strontium system. Z. Metallkde. 56: 695–703.
[26]  Fornasini ML, Chabot B, Parthé E (1978) Crystal-Structure of Sm11cd45 with Gamma-Brass and Alpha-Mn Clusters. Acta. Cryst. B34: 2093–2099. doi: 10.1107/s0567740878007505
[27]  Bradley AJ, Jones P (1933) An X-ray investigation of the copper-aluminium alloys. J. Inst. Met. 51: 131–162.
[28]  Bruzzone G, Fornasini ML (1974) Contribution to System Samarium-Cadmium. J. Less-Common Met. 37: 289–292. doi: 10.1016/0022-5088(74)90045-9
[29]  Bruzzone G, Merlo F (1973) Lanthanum-Cadmium System. J. Less-Common Met. 30: 303–305. doi: 10.1016/0022-5088(73)90115-x
[30]  Piao SY, Gomez CP, Lidin S (2006) Complexity of hexagonal approximants in the RE13Zn~58 system (RE = Ce, Pr, Nd, Sm, Gd, Tb and Dy). Z. Kristallogr., New Cryst. Struct. 221: 391–401. doi: 10.1524/zkri.2006.221.5-7.391
[31]  Piao SY, Palatinus L, Lidin S (2008) All the disorder mechanisms in the 13:58 phases come together. Out of the modulated confusion rises the remarkable phase Ce12.60Cd58.68(2). Inorg. Chem. 47: 1079–1086. doi: 10.1021/ic701962b
[32]  Larson AC, Cromer DT (1971) Crystal Structure of YCd6. Acta. Cryst. B27: 1875–1879. doi: 10.1107/s0567740871005028
[33]  Binnewies M, Milke E (1999) Thermodynamic Data of Elements and Compounds. WILEY-VCH, Weinheim. 295 p.
[34]  Sheldrick GM (2007) A short history of SHELX, Acta Crystallographica Section A: Foundations of Crystallography. 64: 112–122. doi: 10.1107/s0108767307043930
[35]  Bruzzone G, Fornasini ML, Merlo F (1971) Gadolinium-Cadmium System. J. Less-Common Met. 25: 295–301. doi: 10.1016/0022-5088(71)90153-6
[36]  Spedding FH, Hanak JJ, Daane AH (1961) High Temperature Allotropy and Thermal Expansion of the Rare-Earth Metals. J. Less-Common Met. 3 no. 2: 110–124. doi: 10.1016/0022-5088(61)90003-0

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133