全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS ONE  2014 

Opposite Effects of Gene Deficiency and Pharmacological Inhibition of Soluble Epoxide Hydrolase on Cardiac Fibrosis

DOI: 10.1371/journal.pone.0094092

Full-Text   Cite this paper   Add to My Lib

Abstract:

Arachidonic acid-derived epoxyeicosatrienoic acids (EETs) are important regulators of cardiac remodeling; manipulation of their levels is a potentially useful pharmacological strategy. EETs are hydrolyzed by soluble epoxide hydrolase (sEH) to form the corresponding diols, thus altering and reducing the activity of these oxylipins. To better understand the phenotypic impact of sEH disruption, we compared the effect of EPHX2 gene knockout (EPHX2?/?) and sEH inhibition in mouse models. Measurement of plasma oxylipin profiles confirmed that the ratio of EETs/DHETs was increased in EPHX2?/? and sEH-inhibited mice. However, plasma concentrations of 9, 11, 15, 19-HETE were elevated in EPHX2?/? but not sEH-inhibited mice. Next, we investigated the role of this difference in cardiac dysfunction induced by Angiotensin II (AngII). Both EPHX2 gene deletion and inhibition protected against AngII-induced cardiac hypertrophy. Interestingly, cardiac dysfunction was attenuated by sEH inhibition rather than gene deletion. Histochemical staining revealed that compared with pharmacological inhibition, EPHX2 deletion aggravated AngII-induced myocardial fibrosis; the mRNA levels of fibrotic-related genes were increased. Furthermore, cardiac inflammatory response was greater in EPHX2?/? than sEH-inhibited mice with AngII treatment, as evidenced by increased macrophage infiltration and expression of MCP-1 and IL-6. In vitro, AngII-upregulated MCP-1 and IL-6 expression was significantly attenuated by sEH inhibition but promoted by EPHX2 deletion in cardiofibroblasts. Thus, compared with pharmacological inhibition of sEH, EPHX2 deletion caused the shift in arachidonic acid metabolism, which may led to pathological cardiac remodeling, especially cardiac fibrosis.

References

[1]  Berk BC, Fujiwara K, Lehoux S (2007) ECM remodeling in hypertensive heart disease. J Clin Invest 117: 568–575. doi: 10.1172/jci31044
[2]  Kenchaiah S, Pfeffer MA (2004) Cardiac remodeling in systemic hypertension. Med Clin North Am 88: 115–130. doi: 10.1016/s0025-7125(03)00168-8
[3]  Pare GC, Easlick JL, Mislow JM, McNally EM, Kapiloff MS (2005) Nesprin-1alpha contributes to the targeting of mAKAP to the cardiac myocyte nuclear envelope. Exp Cell Res 303: 388–399. doi: 10.1016/j.yexcr.2004.10.009
[4]  Porter KE, Turner NA (2009) Cardiac fibroblasts: at the heart of myocardial remodeling. Pharmacol Ther 123: 255–278. doi: 10.1016/j.pharmthera.2009.05.002
[5]  Hinglais N, Heudes D, Nicoletti A, Mandet C, Laurent M, et al. (1994) Colocalization of myocardial fibrosis and inflammatory cells in rats. Lab Invest 70: 286–294. doi: 10.1016/s0008-6363(96)00158-7
[6]  Hayashidani S, Tsutsui H, Shiomi T, Ikeuchi M, Matsusaka H, et al. (2003) Anti-monocyte chemoattractant protein-1 gene therapy attenuates left ventricular remodeling and failure after experimental myocardial infarction. Circulation 108: 2134–2140. doi: 10.1161/01.cir.0000092890.29552.22
[7]  Anzai A, Anzai T, Nagai S, Maekawa Y, Naito K, et al. (2012) Regulatory role of dendritic cells in postinfarction healing and left ventricular remodeling. Circulation 125: 1234–1245. doi: 10.1161/circulationaha.111.052126
[8]  Ratcliffe NR, Hutchins J, Barry B, Hickey WF (2000) Chronic myocarditis induced by T cells reactive to a single cardiac myosin peptide: persistent inflammation, cardiac dilatation, myocardial scarring and continuous myocyte apoptosis. J Autoimmun 15: 359–367. doi: 10.1006/jaut.2000.0432
[9]  Dixon IM, Cunnington RH (2011) Mast cells and cardiac fibroblasts: accomplices in elevation of collagen synthesis in modulation of fibroblast phenotype. Hypertension 58: 142–144. doi: 10.1161/hypertensionaha.111.174748
[10]  Levick SP, Loch DC, Taylor SM, Janicki JS (2007) Arachidonic acid metabolism as a potential mediator of cardiac fibrosis associated with inflammation. J Immunol 178: 641–646. doi: 10.4049/jimmunol.178.2.641
[11]  Imig JD, Hammock BD (2009) Soluble epoxide hydrolase as a therapeutic target for cardiovascular diseases. Nat Rev Drug Discov 8: 794–805. doi: 10.1038/nrd2875
[12]  Nishimura M, Hirai A, Omura M, Tamura Y, Yoshida S (1989) Arachidonic acid metabolites by cytochrome P-450 dependent monooxygenase pathway in bovine adrenal fasciculata cells. Prostaglandins 38: 413–430. doi: 10.1016/0090-6980(89)90124-x
[13]  Capdevila J, Marnett LJ, Chacos N, Prough RA, Estabrook RW (1982) Cytochrome P-450-dependent oxygenation of arachidonic acid to hydroxyicosatetraenoic acids. Proc Natl Acad Sci U S A 79: 767–770. doi: 10.1073/pnas.79.3.767
[14]  Rossaint J, Nadler JL, Ley K, Zarbock A (2012) Eliminating or blocking 12/15-lipoxygenase reduces neutrophil recruitment in mouse models of acute lung injury. Crit Care 16: R166. doi: 10.1186/cc11518
[15]  Goetzl EJ, Brash AR, Tauber AI, Oates JA, Hubbard WC (1980) Modulation of human neutrophil function by monohydroxy-eicosatetraenoic acids. Immunology 39: 491–501.
[16]  Goetzl EJ, Hill HR, Gorman RR (1980) Unique aspects of the modulation of human neutrophil function by 12-L-hydroperoxy-5,8,10,14-eicosatetraen?oicacid. Prostaglandins 19: 71–85. doi: 10.1016/0090-6980(80)90155-0
[17]  Tunctan B, Korkmaz B, Sari AN, Kacan M, Unsal D, et al. (2012) A Novel Treatment Strategy for Sepsis and Septic Shock Based on the Interactions between Prostanoids, Nitric Oxide, and 20-Hydroxyeicosatetraenoic Acid. Antiinflamm Antiallergy Agents Med Chem 11: 121–150. doi: 10.2174/187152312803305759
[18]  Anwar-mohamed A, Zordoky BN, Aboutabl ME, El-Kadi AO (2010) Alteration of cardiac cytochrome P450-mediated arachidonic acid metabolism in response to lipopolysaccharide-induced acute systemic inflammation. Pharmacol Res 61: 410–418. doi: 10.1016/j.phrs.2009.12.015
[19]  Hoff U, Lukitsch I, Chaykovska L, Ladwig M, Arnold C, et al. (2011) Inhibition of 20-HETE synthesis and action protects the kidney from ischemia/reperfusion injury. Kidney Int 79: 57–65. doi: 10.1038/ki.2010.377
[20]  Spector AA, Fang X, Snyder GD, Weintraub NL (2004) Epoxyeicosatrienoic acids (EETs): metabolism and biochemical function. Prog Lipid Res 43: 55–90. doi: 10.1016/s0163-7827(03)00049-3
[21]  Deng Y, Theken KN, Lee CR (2010) Cytochrome P450 epoxygenases, soluble epoxide hydrolase, and the regulation of cardiovascular inflammation. J Mol Cell Cardiol 48: 331–341. doi: 10.1016/j.yjmcc.2009.10.022
[22]  Chiamvimonvat N, Ho CM, Tsai HJ, Hammock BD (2007) The soluble epoxide hydrolase as a pharmaceutical target for hypertension. J Cardiovasc Pharmacol 50: 225–237. doi: 10.1097/fjc.0b013e3181506445
[23]  Xu D, Li N, He Y, Timofeyev V, Lu L, et al. (2006) Prevention and reversal of cardiac hypertrophy by soluble epoxide hydrolase inhibitors. Proc Natl Acad Sci U S A 103: 18733–18738. doi: 10.1073/pnas.0609158103
[24]  Luria A, Weldon SM, Kabcenell AK, Ingraham RH, Matera D, et al. (2007) Compensatory mechanism for homeostatic blood pressure regulation in Ephx2 gene-disrupted mice. J Biol Chem 282: 2891–2898. doi: 10.1074/jbc.m608057200
[25]  Ai D, Pang W, Li N, Xu M, Jones PD, et al. (2009) Soluble epoxide hydrolase plays an essential role in angiotensin II-induced cardiac hypertrophy. Proc Natl Acad Sci U S A 106: 564–569. doi: 10.1073/pnas.0811022106
[26]  Sinal CJ, Miyata M, Tohkin M, Nagata K, Bend JR, et al. (2000) Targeted disruption of soluble epoxide hydrolase reveals a role in blood pressure regulation. J Biol Chem 275: 40504–40510. doi: 10.1074/jbc.m008106200
[27]  van Kesteren CA, Saris JJ, Dekkers DH, Lamers JM, Saxena PR, et al. (1999) Cultured neonatal rat cardiac myocytes and fibroblasts do not synthesize renin or angiotensinogen: evidence for stretch-induced cardiomyocyte hypertrophy independent of angiotensin II. Cardiovasc Res 43: 148–156. doi: 10.1016/s0008-6363(99)00057-7
[28]  Zein CO, Lopez R, Fu X, Kirwan JP, Yerian LM, et al. (2012) Pentoxifylline decreases oxidized lipid products in nonalcoholic steatohepatitis: New evidence on the potential therapeutic mechanism. Hepatology 56: 1291–1299. doi: 10.1002/hep.25778
[29]  Nie X, Song S, Zhang L, Qiu Z, Shi S, et al. (2012) 15-Hydroxyeicosatetraenoic acid (15-HETE) protects pulmonary artery smooth muscle cells from apoptosis via inducible nitric oxide synthase (iNOS) pathway. Prostaglandins Other Lipid Mediat 97: 50–59. doi: 10.1016/j.prostaglandins.2011.11.003
[30]  Singh NK, Wang D, Kundumani-Sridharan V, Van Quyen D, Niu J, et al. (2011) 15-Lipoxygenase-1-enhanced Src-Janus kinase 2-signal transducer and activator of transcription 3 stimulation and monocyte chemoattractant protein-1 expression require redox-sensitive activation of epidermal growth factor receptor in vascular wall remodeling. J Biol Chem 286: 22478–22488. doi: 10.1074/jbc.m111.225060
[31]  Honeck H, Gross V, Erdmann B, Kargel E, Neunaber R, et al. (2000) Cytochrome P450-dependent renal arachidonic acid metabolism in desoxycorticosterone acetate-salt hypertensive mice. Hypertension 36: 610–616. doi: 10.1161/01.hyp.36.4.610
[32]  Althurwi HN, Tse MM, Abdelhamid G, Zordoky BN, Hammock BD, et al. (2013) Soluble epoxide hydrolase inhibitor, TUPS, protects against isoprenaline-induced cardiac hypertrophy. Br J Pharmacol 168: 1794–1807. doi: 10.1111/bph.12066
[33]  Node K, Huo Y, Ruan X, Yang B, Spiecker M, et al. (1999) Anti-inflammatory properties of cytochrome P450 epoxygenase-derived eicosanoids. Science 285: 1276–1279. doi: 10.1126/science.285.5431.1276
[34]  Francois H, Athirakul K, Howell D, Dash R, Mao L, et al. (2005) Prostacyclin protects against elevated blood pressure and cardiac fibrosis. Cell Metab 2: 201–207. doi: 10.1016/j.cmet.2005.08.005
[35]  Kalkman EA, van Suylen RJ, van Dijk JP, Saxena PR, Schoemaker RG (1995) Chronic aspirin treatment affects collagen deposition in non-infarcted myocardium during remodeling after coronary artery ligation in the rat. J Mol Cell Cardiol 27: 2483–2494. doi: 10.1006/jmcc.1995.0236
[36]  Brilla CG, Zhou G, Rupp H, Maisch B, Weber KT (1995) Role of angiotensin II and prostaglandin E2 in regulating cardiac fibroblast collagen turnover. Am J Cardiol 76: 8D–13D. doi: 10.1016/s0002-9149(99)80485-8
[37]  Harding P, LaPointe MC (2011) Prostaglandin E2 increases cardiac fibroblast proliferation and increases cyclin D expression via EP1 receptor. Prostaglandins Leukot Essent Fatty Acids 84: 147–152. doi: 10.1016/j.plefa.2011.01.003
[38]  Ding WY, Ti Y, Wang J, Wang ZH, Xie GL, et al. (2012) Prostaglandin F2alpha facilitates collagen synthesis in cardiac fibroblasts via an F-prostanoid receptor/protein kinase C/Rho kinase pathway independent of transforming growth factor beta1. Int J Biochem Cell Biol 44: 1031–1039. doi: 10.1016/j.biocel.2012.03.013
[39]  Gomez GA, Morisseau C, Hammock BD, Christianson DW (2004) Structure of human epoxide hydrolase reveals mechanistic inferences on bifunctional catalysis in epoxide and phosphate ester hydrolysis. Biochemistry 43: 4716–4723. doi: 10.1021/bi036189j
[40]  Luria A, Morisseau C, Tsai HJ, Yang J, Inceoglu B, et al. (2009) Alteration in plasma testosterone levels in male mice lacking soluble epoxide hydrolase. Am J Physiol Endocrinol Metab 297: E375–383. doi: 10.1152/ajpendo.00131.2009
[41]  EnayetAllah AE, Luria A, Luo B, Tsai HJ, Sura P, et al. (2008) Opposite regulation of cholesterol levels by the phosphatase and hydrolase domains of soluble epoxide hydrolase. J Biol Chem 283: 36592–36598. doi: 10.1074/jbc.m806315200
[42]  Hou HH, Hammock BD, Su KH, Morisseau C, Kou YR, et al. (2012) N-terminal domain of soluble epoxide hydrolase negatively regulates the VEGF-mediated activation of endothelial nitric oxide synthase. Cardiovasc Res 93: 120–129. doi: 10.1093/cvr/cvr267
[43]  Morisseau C, Schebb NH, Dong H, Ulu A, Aronov PA, et al. (2012) Role of soluble epoxide hydrolase phosphatase activity in the metabolism of lysophosphatidic acids. Biochem Biophys Res Commun 419: 796–800. doi: 10.1016/j.bbrc.2012.02.108
[44]  Gobeil F Jr, Bernier SG, Vazquez-Tello A, Brault S, Beauchamp MH, et al. (2003) Modulation of pro-inflammatory gene expression by nuclear lysophosphatidic acid receptor type-1. J Biol Chem 278: 38875–38883. doi: 10.1074/jbc.m212481200
[45]  Tejera N, Boeglin WE, Suzuki T, Schneider C (2012) COX-2-dependent and -independent biosynthesis of dihydroxy-arachidonic acids in activated human leukocytes. J Lipid Res 53: 87–94. doi: 10.1194/jlr.m017822
[46]  Burlew BS, Weber KT (2002) Cardiac fibrosis as a cause of diastolic dysfunction. Herz 27: 92–98. doi: 10.1007/s00059-002-2354-y
[47]  Lopez B, Gonzalez A, Querejeta R, Larman M, Diez J (2006) Alterations in the pattern of collagen deposition may contribute to the deterioration of systolic function in hypertensive patients with heart failure. J Am Coll Cardiol 48: 89–96. doi: 10.1016/j.jacc.2006.01.077
[48]  Sirish P, Li N, Liu JY, Lee KS, Hwang SH, et al. (2013) Unique mechanistic insights into the beneficial effects of soluble epoxide hydrolase inhibitors in the prevention of cardiac fibrosis. Proc Natl Acad Sci U S A 110: 5618–5623. doi: 10.1073/pnas.1221972110

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133