全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS ONE  2014 

Phytoplankton Diversity and Community Composition along the Estuarine Gradient of a Temperate Macrotidal Ecosystem: Combined Morphological and Molecular Approaches

DOI: 10.1371/journal.pone.0094110

Full-Text   Cite this paper   Add to My Lib

Abstract:

Microscopical and molecular analyses were used to investigate the diversity and spatial community structure of spring phytoplankton all along the estuarine gradient in a macrotidal ecosystem, the Baie des Veys (eastern English Channel). Taxa distribution at high tide in the water column appeared to be mainly driven by the tidal force which superimposed on the natural salinity gradient, resulting in a two-layer flow within the channel. Lowest taxa richness and abundance were found in the bay where Teleaulax-like cryptophytes dominated. A shift in species composition occurred towards the mouth of the river, with the diatom Asterionellopsis glacialis dramatically accumulating in the bottom waters of the upstream brackish reach. Small thalassiosiroid diatoms dominated the upper layer river community, where taxa richness was higher. Through the construction of partial 18S rDNA clone libraries, the microeukaryotic diversity was further explored for three samples selected along the surface salinity gradient (freshwater - brackish - marine). Clone libraries revealed a high diversity among heterotrophic and/or small-sized protists which were undetected by microscopy. Among them, a rich variety of Chrysophyceae and other lineages (e.g. novel marine stramenopiles) are reported here for the first time in this transition area. However, conventional microscopy remains more efficient in revealing the high diversity of phototrophic taxa, low in abundances but morphologically distinct, that is overlooked by the molecular approach. The differences between microscopical and molecular analyses and their limitations are discussed here, pointing out the complementarities of both approaches, for a thorough phytoplankton community description.

References

[1]  McLusky DS (1993) Marine and estuarine gradients — An overview. Netherlands Journal of Aquatic Ecology 27: 489–493. doi: 10.1007/bf02334809
[2]  Pritchard DW (1989) Estuarine classification - a help or a hindrance. In: Neilson BJ, Kuo A, Brubaker J, editors. Estuarine Circulation. Clifton, NJ: Humana Press. pp. 1–38.
[3]  Trigueros JM, Orive E (2000) Tidally driven distribution of phytoplankton blooms in a shallow, macrotidal estuary. J Plankton Res 22: 969–986. doi: 10.1093/plankt/22.5.969
[4]  Azam F, Fenchel T, Field JG, Gray JS, Meyer-Reil LA, et al. (1983) The ecological role of water-column microbes in the sea. Mar Ecol Prog Ser 10: 257–263. doi: 10.3354/meps010257
[5]  Díez B, Pedrós-Alió C, Massana R (2001) Study of genetic diversity of eukaryotic picoplankton in different oceanic regions by small-subunit rRNA gene cloning and sequencing. Appl Environ Microbiol 67: 2932–2941. doi: 10.1128/aem.67.7.2932-2941.2001
[6]  Moon-van der Staay SY, De Wachter R, Vaulot D (2001) Oceanic 18S rDNA sequences from picoplankton reveal unsuspected eukaryotic diversity. Nature 409: 607–610. doi: 10.1038/35054541
[7]  Edgcomb VP, Kysela DT, Teske A, De Vera Gomez A, Sogin ML (2002) Benthic eukaryotic diversity in the Guaymas Basin hydrothermal vent environment. Proc Natl Acad Sci U S A 99: 7658–7662. doi: 10.1073/pnas.062186399
[8]  Massana R, Balagué V, Guillou L, Pedrós-Alió C (2004) Picoeukaryotic diversity in an oligotrophic coastal site studied by molecular and culturing approaches. FEMS Microbiol Ecol 50: 231–243. doi: 10.1016/j.femsec.2004.07.001
[9]  ?lapeta J, Moreira D, López-García P (2005) The extent of protist diversity: insights from molecular ecology of freshwater eukaryotes. Proc Biol Sci/The Royal Society 272: 2073–2081. doi: 10.1098/rspb.2005.3195
[10]  Behnke A, Barger KJ, Bunge J, Stoeck T (2010) Spatio-temporal variations in protistan communities along an O2/H2S gradient in the anoxic Framvaren Fjord (Norway). FEMS Microbiol Ecol 72: 89–102. doi: 10.1111/j.1574-6941.2010.00836.x
[11]  Moreira D, López-García P (2002) The molecular ecology of microbial eukaryotes unveils a hidden world. Trends Microbiol 10: 31–38. doi: 10.1016/s0966-842x(01)02257-0
[12]  Muylaert K, Sabbe K, Vyverman W (2009) Changes in phytoplankton diversity and community composition along the salinity gradient of the Schelde estuary (Belgium/The Netherlands). Estuar Coast Shelf Sci 82: 335–340. doi: 10.1016/j.ecss.2009.01.024
[13]  Lionard M, Muylaert K, Hanoutti A, Maris T, Tackx M, et al. (2008) Inter-annual variability in phytoplankton summer blooms in the freshwater tidal reaches of the Schelde estuary (Belgium). Estuar Coast Shelf Sci 79: 694–700. doi: 10.1016/j.ecss.2008.06.013
[14]  Vigil P, Countway P, Rose J, Lonsdale D, Gobler C, et al. (2009) Rapid shifts in dominant taxa among microbial eukaryotes in estuarine ecosystems. Aquat Microb Ecol 54: 83–100. doi: 10.3354/ame01252
[15]  Herfort L, Peterson TD, McCue L, Zuber P (2011) Protist 18S rRNA gene sequence analysis reveals multiple sources of organic matter contributing to turbidity maxima of the Columbia River estuary. Mar Ecol Prog Ser 438: 19–31. doi: 10.3354/meps09303
[16]  Klein C, Claquin P, Bouchart V, Le Roy B, Véron B (2010) Dynamics of Pseudo-nitzschia spp. and domoic acid production in a macrotidal ecosystem of the Eastern English Channel (Normandy, France). Harmful Algae 9: 218–226. doi: 10.1016/j.hal.2009.10.004
[17]  Ubertini M, Lefebvre S, Gangnery A, Grangeré K, Le Gendre R, et al. (2012) Spatial variability of benthic-pelagic coupling in an estuary ecosystem: consequences for microphytobenthos resuspension phenomenon. PloS ONE 7(8): e44155 doi:10.1371/journal.pone.0044155.
[18]  Jouenne F, Lefebvre S, Véron B, Lagadeuc Y (2007) Phytoplankton community structure and primary production in small intertidal estuarine-bay ecosystem (eastern English Channel, France). Marine Biology 151: 805–825. doi: 10.1007/s00227-006-0440-z
[19]  Jouenne F, Lefebvre S, Véron B, Lagadeuc Y (2005) Biological and physicochemical factors controlling short-term variability in phytoplankton primary production and photosynthetic parameters in a macrotidal ecosystem (eastern English Channel). Estuar Coast Shelf Sci 65: 421–439. doi: 10.1016/j.ecss.2005.05.023
[20]  Desprez M, Ducrotoy J-P, Sylvand B (1986) Fluctuations naturelles et évolution artificielle des biocenoses macrozoobenthiques intertidales de trois estuaires des c?tes fran?aises de la Manche. Hydrobiologia 142: 249–270. doi: 10.1007/bf00026763
[21]  Aminot A, Kérouel R (2007) Dosage automatique des nutriments dans les eaux marines: méthodes en flux continu. Ifremer. Ed Quae. 187 p.
[22]  Welschmeyer N (1994) Fluorometric analysis of chlorophyll chlorophyll b and pheopigments. Limnol Oceanogr 39: 1985–1992. doi: 10.4319/lo.1994.39.8.1985
[23]  Bazin P, Jouenne F, Deton-Cabanillas AF, Pérez-Ruzafa á, Véron B (2014) Complex patterns in phytoplankton and microeukaryote diversity along the estuarine continuum. Hydrobiologia 726: 155–178. doi: 10.1007/s10750-013-1761-9
[24]  Bourrelly P (1981) Les algues d'eau douce - Tome 1,2 et 3. Paris: Ed Boubée. 572, 577 and 606 p.
[25]  Tomas CR (1997) Identifying Marine Phytoplankton. San Diego: Academic Press. 858 p.
[26]  John DM, Whitton BA, Brook AJ (2002) The Freshwater Algal Flora of the British Isles: An Identification Guide to Freshwater and Terrestrial Algae. Cambridge: Cambridge University Press. 714 p.
[27]  Uterm?hl von H (1931) Neue Wege in der quantitativen Erfassung des Planktons. (Mit besondere Beriicksichtigung des Ultrapanktons). Verh Int Verein Theor Angew Limnol 5: 567–595.
[28]  EN 15204 (2006) Water quality - Guidance standard on the enumeration of phytoplankton using inverted microscopy (Uterm?hl technique). Brussels, Belgium: European Committee for Standardization. 39 p.
[29]  Lund JWG, Kipling C, Le Cren ED (1958) The Inverted Microscope method of estimating algal numbers and the statistical basis of estimations by counting. Hydrobiologia 11: 143–170. doi: 10.1007/bf00007865
[30]  Medlin L, Elwood HJ, Stickel S, Sogin ML (1988) The characterization of enzymatically amplified eukaryotic 16S-like rRNA-coding regions. Gene 71: 491–499. doi: 10.1016/0378-1119(88)90066-2
[31]  Hepperle D (2004) SeqAssem. A sequence analysis tool, contig assembler and trace data visualization for molecular sequences. Win32-Version. Distributed by the author. Available: http://www.sequentix.de.
[32]  Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215: 403–410. doi: 10.1016/s0022-2836(05)80360-2
[33]  Huber T, Faulkner G, Hugenholtz P (2004) Bellerophon: a program to detect chimeric sequences in multiple sequence alignments. Bioinformatics 20: 2317–2319. doi: 10.1093/bioinformatics/bth226
[34]  Viprey M, Guillou L, Ferréol M, Vaulot D (2008) Wide genetic diversity of picoplanktonic green algae (Chloroplastida) in the Mediterranean Sea uncovered by a phylum-biased PCR approach. Environ Microbiol 10: 1804–1822. doi: 10.1111/j.1462-2920.2008.01602.x
[35]  Katoh K, Kuma K, Toh H, Miyata T (2005) MAFFT version 5: improvement in accuracy of multiple sequence alignment. Nucleic Acids Res 33: 511–518. doi: 10.1093/nar/gki198
[36]  Schloss PD, Westcott SL, Ryabin T, Hall JR, Hartmann M, et al. (2009) Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl Environ Microbiol 75: 7537–7541. doi: 10.1128/aem.01541-09
[37]  Romari K, Vaulot D (2004) Composition and temporal variability of picoeukaryote communities at a coastal site of the English Channel from 18S rDNA sequences. Limnol Oceanogr 49: 784–798. doi: 10.4319/lo.2004.49.3.0784
[38]  Chao A (1984) Non parametric estimation of the number of classes in a population. Scand J Statist 11: 265–270.
[39]  Hammer ?, Harper DAT, Ryan PD (2001) PAST: Paleontological statistics software package for education and data analysis. Paleontologia Electronica 4: 1–9.
[40]  Massana R, Guillou L, Díez B, Pedro C (2002) Unveiling the organisms behind novel eukaryotic ribosomal DNA sequences from the Ocean. Appl Environ Microbiol 68: 4554–4558. doi: 10.1128/aem.68.9.4554-4558.2002
[41]  Massana R, Castresana J, Balague V, Guillou L, Romari K, et al. (2004) Phylogenetic and ecological analysis of Novel Marine Stramenopiles. Appl Environ Microbiol 70: 3528–3534. doi: 10.1128/aem.70.6.3528-3534.2004
[42]  Charvet S, Vincent WF, Lovejoy C (2011) Chrysophytes and other protists in High Arctic lakes: molecular gene surveys, pigment signatures and microscopy. Polar Biol 35: 733–748. doi: 10.1007/s00300-011-1118-7
[43]  Luo W, Bock C, Li HR, Padisák J, Krienitz L (2011) Molecular and microscopic diversity of planktonic eukaryotes in the oligotrophic Lake Stechlin (Germany). Hydrobiologia 661: 133–143. doi: 10.1007/s10750-010-0510-6
[44]  Kolodziej K, Stoeck T (2007) Cellular identification of a novel uncultured marine stramenopile (MAST-12 Clade) small-subunit rRNA gene sequence from a norwegian estuary by use of fluorescence in situ hybridization-scanning electron microscopy. Appl Environ Microbiol 73: 2718–2726. doi: 10.1128/aem.02158-06
[45]  Massana R, Terrado R, Forn I, Lovejoy C, Pedrós-Alió C (2006) Distribution and abundance of uncultured heterotrophic flagellates in the world oceans. Environ Microbiol 8: 1515–1522. doi: 10.1111/j.1462-2920.2006.01042.x
[46]  del Campo J, Massana R (2011) Emerging diversity within chrysophytes, choanoflagellates and bicosoecids based on molecular surveys. Protist 162: 435–448. doi: 10.1016/j.protis.2010.10.003
[47]  Andersen RA, Van de Peer Y, Potter D, Sexton JP, Kawachi M, et al. (1999) Phylogenetic analysis of the SSU rRNA from members of the Chrysophyceae. Protist 150: 71–84. doi: 10.1016/s1434-4610(99)70010-6
[48]  Boenigk J, Pfandl K, Stadler P, Chatzinotas A (2005) High diversity of the “Spumella-like” flagellates: an investigation based on the SSU rRNA gene sequences of isolates from habitats located in six different geographic regions. Environ Microbiol 7: 685–697. doi: 10.1111/j.1462-2920.2005.00743.x
[49]  Shi XL, Marie D, Jardillier L, Scanlan DJ, Vaulot D (2009) Groups without cultured representatives dominate eukaryotic picophytoplankton in the oligotrophic South East Pacific Ocean. PloS ONE 4(10): e7657 doi:10.1371/journal.pone.0007657.
[50]  Zuendorf A, Bunge J, Behnke A, Barger KJ, Stoeck T (2006) Diversity estimates of microeukaryotes below the chemocline of the anoxic Mariager Fjord, Denmark. FEMS Microbiol Ecol 58: 476–491. doi: 10.1111/j.1574-6941.2006.00171.x
[51]  Bachvaroff TR, Kim S, Guillou L, Delwiche CF, Coats DW (2012) Molecular diversity of the syndinean genus Euduboscquella based on single-cell PCR analysis. Appl Environ Microbiol 78: 334–345. doi: 10.1128/aem.06678-11
[52]  Deane JA, Strachan IM, Saunders GW, Hill DRA, Mcfadden GI (2002) Cryptomonad evolution: nuclear 18S rDNA phylogeny versus cell morphology and pigmentation. J Phycol 38 (6): 1236–1244. doi: 10.1046/j.1529-8817.2002.01250.x
[53]  Not F, Valentin K, Romari K, Lovejoy C, Massana R, et al. (2007) Picobiliphytes: A marine picoplanktonic algal group with unknown affinities to other eukaryotes. Science 315: 252–254. doi: 10.1126/science.1136264
[54]  Seoane S, Laza A, Orive E (2006) Monitoring phytoplankton assemblages in estuarine waters: The application of pigment analysis and microscopy to size-fractionated samples. Estuar Coast Shelf Sci 67: 343–354. doi: 10.1016/j.ecss.2005.10.020
[55]  Harrison PJ, Yin K, Lee JHW, Gan J, Liu H (2008) Physical–biological coupling in the Pearl River Estuary. Cont Shelf Res 28: 1405–1415. doi: 10.1016/j.csr.2007.02.011
[56]  Clay BL, Kugrens P (1999) Characterization of Hemiselmis amylosa sp. nov. and phylogenetic placement of the blue-green Cryptomonads H. amylosa and Falcomonas daucoides. Protist 150: 297–310. doi: 10.1016/s1434-4610(99)70031-3
[57]  Savin MC, Martin JL, LeGresley M, Giewat M, Rooney-Varga J (2004) Plankton diversity in the Bay of Fundy as measured by morphological and molecular methods. Microb Ecol 48: 51–65. doi: 10.1007/s00248-003-1033-8
[58]  Laza-Martínez A (2012) Urgorri complanatus gen. et sp. nov. (Cryptophyceae), a red-tide-forming species in brackish waters. J Phycol 48: 423–435. doi: 10.1111/j.1529-8817.2012.01130.x
[59]  Shalchian-Tabrizi K, Br?te J, Logares R, Klaveness D, Berney C, et al. (2008) Diversification of unicellular eukaryotes: cryptomonad colonizations of marine and fresh waters inferred from revised 18S rRNA phylogeny. Environ Microbiol 10: 2635–2644. doi: 10.1111/j.1462-2920.2008.01685.x
[60]  Alpine A, Cloern J (1988) Phytoplankton growth rates in a light-limited environment, San Francisco Bay. Mar Ecol Prog Ser 44: 167–173. doi: 10.3354/meps044167
[61]  Wylezich C, Jürgens K (2011) Protist diversity in suboxic and sulfidic waters of the Black Sea. Environ Microbiol 13: 2939–2956. doi: 10.1111/j.1462-2920.2011.02569.x
[62]  Trigueros JM, Orive E (2000) Tidally driven distribution of phytoplankton blooms in a shallow, macrotidal estuary. J Plankton Res 22: 969–986. doi: 10.1093/plankt/22.5.969
[63]  Quinlan EL, Phlips EJ (2007) Phytoplankton assemblages across the marine to low-salinity transition zone in a blackwater dominated estuary. J Plankton Res 29: 401–416. doi: 10.1093/plankt/fbm024
[64]  Caron DA, Countway PD, Brown MV (2004) The growing contributions of molecular biology and immunology to protistan ecology: molecular signatures as ecological tools. J Eukaryot Microbiol 51: 38–48. doi: 10.1111/j.1550-7408.2004.tb00159.x
[65]  ?lapeta J, López-García P, Moreira D (2006) Global dispersal and ancient cryptic species in the smallest marine eukaryotes. Mol Biol Evol 23: 23–29. doi: 10.1093/molbev/msj001
[66]  Liu H, Probert I, Uitz J, Claustre H, Aris-Brosou S, et al. (2009) Extreme diversity in noncalcifying haptophytes explains a major pigment paradox in open oceans. Proc Natl Acad Sci U S A 106: 12803–12808. doi: 10.1073/pnas.0905841106
[67]  Stoeck T, Hayward B, Taylor GT, Varela R, Epstein SS (2006) A multiple PCR-primer approach to access the microeukaryotic diversity in environmental samples. Protist 157: 31–43. doi: 10.1016/j.protis.2005.10.004
[68]  Zhu F, Massana R, Not F, Marie D, Vaulot D (2005) Mapping of picoeucaryotes in marine ecosystems with quantitative PCR of the 18S rRNA gene. FEMS Microbiol Ecol 52: 79–92. doi: 10.1016/j.femsec.2004.10.006
[69]  Muylaert K, Van Mieghem R, Sabbe K, Tackx M, Vyverman W (2000) Dynamics and trophic roles of heterotrophic protists in the plankton of a freshwater tidal estuary. Hydrobiologia 432: 25–36. doi: 10.1023/a:1004017018702
[70]  Potvin M, Lovejoy C (2009) PCR-based diversity estimates of artificial and environmental 18S rRNA gene libraries. J Eukaryot Microbiol 56: 174–181. doi: 10.1111/j.1550-7408.2008.00386.x
[71]  Caron DA, Countway PD, Savai P, Gast RJ, Schnetzer A, et al. (2009) Defining DNA-based operational taxonomic units for microbial eukaryote ecology. Appl Environ Microbiol 75: 5797–5808. doi: 10.1128/aem.00298-09

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133