全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS ONE  2014 

Persistence, Seasonal Dynamics and Pathogenic Potential of Vibrio Communities from Pacific Oyster Hemolymph

DOI: 10.1371/journal.pone.0094256

Full-Text   Cite this paper   Add to My Lib

Abstract:

Bacteria of the genus Vibrio occur at a continuum from free-living to symbiotic life forms, including opportunists and pathogens, that can contribute to severe diseases, for instance summer mortality events of Pacific oysters Crassostrea gigas. While most studies focused on Vibrio isolated from moribund oysters during mortality outbreaks, investigations of the Vibrio community in healthy oysters are rare. Therefore, we characterized the persistence, diversity, seasonal dynamics, and pathogenicity of the Vibrio community isolated from healthy Pacific oysters. In a reciprocal transplant experiment we repeatedly sampled hemolymph from adult Pacific oysters to differentiate population from site-specific effects during six months of in situ incubation in the field. We characterized virulence phenotypes and genomic diversity based on multilocus sequence typing in a total of 70 Vibrio strains. Based on controlled infection experiments we could show that strains with the ability to colonize healthy adult oysters can also have the potential to induce high mortality rates on larvae. Diversity and abundance of Vibrio varied significantly over time with highest values during and after spawning season. Vibrio communities from transplanted and stationary oysters converged over time, indicating that communities were not population specific, but rather assemble from the surrounding environment forming communities, some of which can persist over longer periods.

References

[1]  Pruzzo C, Hug A, Colwell RR, Donelli G (2005) Pathogenic Vibrio species in the marine and estuarine environment. In: S B, RR C, editors. Ocean and health pathogens in the marine environment. Heidelberg: Springer. pp. 217–252.
[2]  Lavilla-Pitogo CR, Baticados CL, Cruz-Lacierda ER, Pena de la LD (1990) Occurrence of luminous bacterial disease of Penaeus monodon larvae in the Philippines. Aquaculture 91: 1–13. doi: 10.1016/0044-8486(90)90173-k
[3]  Leano EM, Lavilla-Pitogo CR, Paner MG (1998) Bacterial flora in the hepatopancreas of pond-reared Penaeus monodon juveniles with luminous Vibriosis. Aquaculture 164: 367–374. doi: 10.1016/s0044-8486(98)00201-4
[4]  Haldar S, Chatterjee S, Sugimoto N, Das S, Chowdhury N, et al. (2011) Identification of Vibrio campbellii isolated from diseased farm-shrimps from south India and establishment of its pathogenic potential in an Artemia model. Microbiology-Sgm 157: 179–188. doi: 10.1099/mic.0.041475-0
[5]  Lavilla-Pitogo CR, Leano EM, Paner MG (1998) Mortalities of pond-cultured juvenile shrimp, Penaeus monodon, associated with dominance of luminescent vibrios in the rearing environment. Aquaculture 164: 337–349. doi: 10.1016/s0044-8486(98)00198-7
[6]  Austin B, Austin DA, Blanch AR, Cerda M, Grimont F, et al. (1997) A comparison of methods for the typing of fish-pathogenic Vibrio spp. Systematic and Applied Microbiology 20: 89–101. doi: 10.1016/s0723-2020(97)80053-7
[7]  DiSalvo LH, Blecka J, Zebal R (1978) Vibrio anguillarum and larval mortality in a California coastal shellfish hatchery. Applied and Environmental Microbiology 35: 219–221.
[8]  Lacoste A, Jalabert F, Malham S, Cueff A, Gelebart F, et al. (2001) A Vibrio splendidus strain is associated with summer mortality of juvenile oysters Crassostrea gigas in the Bay of Morlaix (North Brittany, France). Diseases of Aquatic Organisms 46: 139–145. doi: 10.3354/dao046139
[9]  Garnier M, Labreuche Y, Garcia C, Robert A, Nicolas JL (2007) Evidence for the involvement of pathogenic bacteria in summer mortalities of the Pacific oyster Crassostrea gigas. Microbial Ecology 53: 187–196. doi: 10.1007/s00248-006-9061-9
[10]  Gay M, Renault T, Pons A-M, LeRoux F (2004) Two Vibrio splendidus related strains collaborate to kill Crassostrea gigas: taxonomy and host alterations. Diseases of Aquatic Organisms 62: 65–74. doi: 10.3354/dao062065
[11]  FAO (2011) Yearbook of fisheries statistics summary tables. Available: ftp://ftpfaoorg/fi/STAT/summary/defaulth?tm#aqua. Accessed 2013 Oct 01.
[12]  Iami T, Numachi K, Oizumi J, Sato S (1965) Studies on the Mass Mortality of the Oyster in Matsushima BayII. Search for Cause of Mass Mortality and the Possibility to Prevent it by Transplantation Experiment. Bulletin of the Tohoku National Fisheries Research Institute 25: 27–38.
[13]  Cheney DP, MacDonald BF, Elston RA (2000) Summer mortality of Pacific oysters, Crassostrea gigas (Thunberg): Initial findings on multiple environmental stressors in Puget Sound, Washington, 1998. Journal of Shellfish Research 19: 353–359.
[14]  Perdue JA, Beattie JH, Chew KK (1981) Some relationships between gametogenic cycle and summer mortality phenomenon in the Pacific oyster (Crassostrea gigas) in Washington State. Journal of Shellfish research 1: 9–16.
[15]  Goulletquer P, Soletchnik P, Le Moine O, Razet D, Geairon P, et al. (1998) Summer mortality of the Pacific cupped oyster Crassostrea gigas in the Bay of Marennes-Oléron (France). ICES Mariculture Committee CM, Copenhagen.
[16]  Watermann BT, Herlyn M, Daehne B, Bergmann S, Meemken M, et al. (2008) Pathology and mass mortality of Pacific oysters, Crassostrea gigas (Thunberg), in 2005 at the East Frisian coast, Germany. Journal of Fish Disease 31: 621–630. doi: 10.1111/j.1365-2761.2008.00953.x
[17]  ESFA (2011) Scientific opinion of the panel on animal health and welfare on a request from the European Commission on the increased mortality events in Pacific oysters Crassostrea gigas. European Food Safety Association 8: 1894–1953.
[18]  Li Y, Qin JG, Abbott CA, Li XX, Benkendorff K (2007) Synergistic impacts of heat shock and spawning on the physiology and immune health of Crassostrea gigas: an explanation for summer mortality in Pacific oysters. American Journal of Physiology-Regulatory Integrative and Comparative Physiology 293: 2353–2362. doi: 10.1152/ajpregu.00463.2007
[19]  Li Y, Qin JG, Li XX, Benkendorff K (2009) Spawning-dependent stress response to food deprivation in Pacific oyster Crassostrea gigas. Aquaculture 286: 309–317. doi: 10.1016/j.aquaculture.2008.09.035
[20]  Malham SK, Cotter E, O'Keeffe S, Lynch S, Culloty SC, et al. (2009) Summer mortality of the Pacific oyster, Crassostrea gigas, in the Irish Sea: The influence of temperature and nutrients on health and survival. Aquaculture 287: 128–138. doi: 10.1016/j.aquaculture.2008.10.006
[21]  Soletchnik P, Lambert C, Costil K (2005) Summer Mortality of Crassostrea gigas (Thunberg) in relation to environmental rearing conditions. Journal of Shellfish Research 24: 197–207.
[22]  Wendling CC, Wegner KM (2013) Relative contribution of reproductive investment, thermal stress and Vibrio infection to summer mortality phenomena in Pacific oytsers. Aquaculture 412–413: 88–96. doi: 10.1016/j.aquaculture.2013.07.009
[23]  Gómez-León J, Villamil L, Lemos M, Novoa B, Figueras A (2005) Isolation of Vibrio alginolyticus and Vibrio splendidus from Aquacultured Carpet Shell Clam (Ruditapes decussatus) Larvae Associated with Mass Mortalities. Applied and Environmental Microbiology 71: 98–103. doi: 10.1128/aem.71.1.98-104.2005
[24]  Jeffries V (1982) Three Vibrio strains pathogenic to larvae of Crassostrea gigas and Ostrea edulis. Aquaculture 29: 201–226. doi: 10.1016/0044-8486(82)90136-3
[25]  Le Roux F, Gay M, Lambert C, Waechter M, Poubalanne S, et al. (2002) Comparative analysis of Vibrio splendidus-related strains isolated during Crassostrea gigas mortality events. Aquatic Living Resources 15: 251–258. doi: 10.1016/s0990-7440(02)01176-2
[26]  Saulnier D, Decker SD, Haffner P, Cobret L, Robert M, et al. (2010) A Large-Scale Epidemiological Study to Identify Bacteria Pathogenic to Pacific Oyster Crassostrea gigas and Correlation Between Virulence and Metalloprotease Activity. Microbial Ecology 59: 787–798. doi: 10.1007/s00248-009-9620-y
[27]  Sugumar G, Nakai T, Hirata Y, Matsubara D, Muroga K (1998) Vibrio splendidus biovar II as the causative agent of bacillary necrosis of Japanese oyster Crassostrea gigas larvae. Diseases of Aquatic Organisms 33: 111–118. doi: 10.3354/dao033111
[28]  Thompson J, Randa M, Marcelino L, Tomita-Mitchell A (2004) Diversity and Dynamics of a North Atlantic Coastal Vibrio Community. Applied and Environmental Microbiology 70: 4103–4110. doi: 10.1128/aem.70.7.4103-4110.2004
[29]  Hunt DE, David LA, Gevers D, Preheim SP, Alm EJ, et al. (2008) Resource partitioning and sympatric differentiation among closely related bacterioplankton. Science 320: 1081–1085. doi: 10.1126/science.1157890
[30]  Harvell D, Altizer S, Cattadori IM, Harrington L, Weil E (2009) Climate change and wildlife diseases: When does the host matter the most? Ecology 90: 912–920. doi: 10.1890/08-0616.1
[31]  Kimes NE, Grim CJ, Johnson WR, Hasan NA, Tall BD, et al. (2012) Temperature regulation of virulence factors in the pathogen Vibrio coralliilyticus. Isme Journal 6: 835–846. doi: 10.1038/ismej.2011.154
[32]  Rosenberg E, Ben-Haim Y (2002) Microbial diseases of corals and global warming. Environmental Microbiology 4: 318–326. doi: 10.1046/j.1462-2920.2002.00302.x
[33]  Estes RM, Friedman CS, Elston RA, Herwig RP (2004) Pathogenicity testing of shellfish hatchery bacterial isolates on Pacific oyster Crassostrea gigas larvae. Diseases of Aquatic Organisms 58: 223–230. doi: 10.3354/dao058223
[34]  Waechter M, Le Roux F, Nicolas JL, Marissal E, Berthe F (2002) Characterisation of Crassostrea gigas spat pathogenic bacteria. Comptes Rendus Biologies 325: 231–238. doi: 10.1016/s1631-0691(02)01428-2
[35]  Tubiash HS, Colwell RR, Sakazaki R (1970) Marine Vibrios Associated with Bacillary Necrosis a Disease of Larval and Juvenile Bivalve Mollusks. Journal of Bacteriology 103: 271–273.
[36]  Pruzzo C, Gallo G, Canesi L (2005) Persistence of Vibrios in marine bivalves: the role of interactions with haemolymph components. Environmental Microbiology 7: 761–772. doi: 10.1111/j.1462-2920.2005.00792.x
[37]  Beaz-Hidalgo R, Balboa S, Romalde J, Figueras M (2010) Diversity and pathogenicity of Vibrio species in cultured bivalve molluscs. Environmental Microbiology Reports 2: 34–43. doi: 10.1111/j.1758-2229.2010.00135.x
[38]  Gomez-Gil B, Roque A, Lacuesta B, Rotllant G (2010) Diversity of Vibrios in the haemolymph of the spider crab Maja brachydactyla. Journal of Applied Microbiology 109: 918–926. doi: 10.1111/j.1365-2672.2010.04718.x
[39]  Guisande J, Lago E, Prado S, Nieto T, Seguín R (2008) Genotypic Diversity of Culturable Vibrio Species Associated with the Culture of Oysters and Clams in Galicia and Screening of Their Pathogenic Potential. Journal of Shellfish Research 27: 801–809. doi: 10.2983/0730-8000(2008)27[801:gdocvs]2.0.co;2
[40]  Wegner KM, Volkenborn N, Peter H, Eiler A (2013) Disturbance induced decoupling between host genetics and composition of the associated microbiome. BMC Microbiology 13. doi: 10.1186/1471-2180-13-252
[41]  Pascual J, Macian MC, Arahal DR, Garay E, Pujalte MJ (2010) Multilocus sequence analysis of the central clade of the genus Vibrio by using the 16S rRNA, recA, pyrH, rpoD, gyrB, rctB and toxR genes. International Journal of Systematic and Evolutionary Microbiology 60: 154–165. doi: 10.1099/ijs.0.010702-0
[42]  Gueguen Y, Cadoret JP, Flament D, Barreau-Roumiguiere C, Girardot AL, et al. (2003) Immune gene discovery by expressed sequence tags generated from hemocytes of the bacteria-challenged oyster, Crassostrea gigas. Gene 303: 139–145. doi: 10.1016/s0378-1119(02)01149-6
[43]  Edgar RC (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucelic Acids Research 32: 1792–1797. doi: 10.1093/nar/gkh340
[44]  Waterhouse AM, Procter JB, Martin DMA, Clamp M, Barton GJ (2009) Jalview Version 2-a multiple sequence alignment editor and analysis workbench. Bioinformatics 25: 1189–1191. doi: 10.1093/bioinformatics/btp033
[45]  Posada D (2008) jModelTest: Phylogenetic model averaging. Molecular Biology and Evolution 25: 1253–1256. doi: 10.1093/molbev/msn083
[46]  Guindon S, Gascuel O (2003) A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Systematic Biology 52: 696–704.
[47]  Posada D, Buckley TR (2004) Model selection and model averaging in phylogenetics: Advantages of akaike information criterion and Bayesian approaches over likelihood ratio tests. Systematic Biology 53: 793–808.
[48]  Guindon S, Dufayard JF, Lefort V, Anisimova M, Hordijk W, et al. (2010) New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Systematic Biology 59: 307–321.
[49]  Rodriguez F, Oliver JL, Marin A, Medina JR (1990) The General Stochastic-Model of Nucleotide Substitution. Journal of Theoretical Biology 142: 485–501. doi: 10.1016/s0022-5193(05)80104-3
[50]  Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39: 783–791. doi: 10.2307/2408678
[51]  Letunic I, Bork P (2011) Interactive Tree Of Life v2: online annotation and display of phylogenetic trees made easy. Nucleic Acids Research 39: W475–W478. doi: 10.1093/nar/gkr201
[52]  Letunic I, Bork P (2007) Interactive Tree Of Life (iTOL): an online tool for phylogenetic tree display and annotation. Bioinformatics 23: 127–128. doi: 10.1093/bioinformatics/btl529
[53]  Felsenstein J (2005) PHYLIP (Phylogeny Inference Package) version 3.6. Distributed by the author Department of Genome Sciences, University of Washington, Seattle.
[54]  Schloss PD, Westcott SL, Ryabin T, Hall JR, Hartmann M, et al. (2009) Introducing mothur: Open-Source, Platform-Independent, Community-Supported Software for Describing and Comparing Microbial Communities. Applied and Environmental Microbiology 75: 7537–7541. doi: 10.1128/aem.01541-09
[55]  Lozupone C, Hamady M, Knight R (2006) UniFrac - An online tool for comparing microbial community diversity in a phylogenetic context. Bmc Bioinformatics 7: 1–14.
[56]  Lozupone C, Knight R (2005) UniFrac: a new phylogenetic method for comparing microbial communities. Applied and Environmental Microbiology 71: 8228–8235. doi: 10.1128/aem.71.12.8228-8235.2005
[57]  Lozupone C, Lladser ME, Knights D, Stombaugh J, Knight R (2011) UniFrac: an effective distance metric for microbial community comparison. Isme Journal 5: 169–172. doi: 10.1038/ismej.2010.133
[58]  Beaz-Hidalgo R, Cleenwerck I, Balboa S, Wachter MD, Thompson F, et al. (2008) Diversity of Vibrios associated with reare clams in Galicia (NW Spain). Systematic and Applied Microbiology 31: 215–222. doi: 10.1016/j.syapm.2008.04.001
[59]  Sawabe T, Kita-Tsukamoto K, Thompson FL (2007) Inferring the evolutionary history of Vibrios by means of multilocus sequence analysis. Journal of Bacteriology 189: 7932–7936. doi: 10.1128/jb.00693-07
[60]  Preheim SP, Boucher Y, Wildschutte H, David LA, Veneziano D, et al. (2011) Metapopulation structure of Vibrionaceae among coastal marine invertebrates. Environmental Microbiology 13: 265–275. doi: 10.1111/j.1462-2920.2010.02328.x
[61]  Elston RA, Hasegawa H, Humphrey KL, Polyak IK, Hase CC (2008) Re-emergence of Vibrio tubiashii in bivalve shellfish aquaculture: severity, environmental drivers, geographic extent and management. Diseases of Aquatic Organisms 82: 119–134. doi: 10.3354/dao01982
[62]  Hada HS, West PA, Lee JV, Stemmler J, Colwell RR (1984) Vibrio tubiashii Sp–Nov, a Pathogen of Bivalve Mollusks. International Journal of Systematic Bacteriology 34: 1–4. doi: 10.1099/00207713-34-1-1
[63]  Oberbeckmann S, Fuchs BM, Meiners M, Wichels A, Wiltshire KH, et al. (2012) Seasonal Dynamics and Modeling of a Vibrio Community in Coastal Waters of the North Sea. Microbial Ecology 63: 543–551. doi: 10.1007/s00248-011-9990-9
[64]  Thompson J, Pacocha S, Pharino C, Klepac-Ceraj V, Hunt D, et al. (2005) Genotypic Diversity Within a Natural Coastal Bacterioplankton Population. Science 307: 1311–1313. doi: 10.1126/science.1106028
[65]  Maeda T, Matsuo Y, Furushita M, Shiba T (2003) Seasonal dynamics in a coastal Vibrio community examined by a rapid clustering method based on 16S rDNA. Fisheries Science 69: 385–394. doi: 10.1046/j.1444-2906.2003.00633.x
[66]  Vezzulli L, Previati M, Pruzzo C, Marchese A, Bourne DG, et al. (2010) Vibrio infections triggering mass mortality events in a warming Mediterranean Sea. Environmental Microbiology 12: 2007–2019. doi: 10.1111/j.1462-2920.2010.02209.x
[67]  Buroker NE, Hershberger WK, Chew KK (1979) Population-Genetics of the Family Ostreidae .1. Intraspecific Studies of Crassostrea gigas and Saccostrea commercialis. Marine Biology 54: 157–169. doi: 10.1007/bf00386595
[68]  Groubert TN, Oliver JD (1994) Interaction of Vibrio vulnificus and the Eastern Oyster, Crassostrea virginica. Journal of Food Protection 57: 224–228.
[69]  Imai T, Numachi K, Oizumi J, Sato S (1965) Studies on the Mass Mortality of the Oyster in Matsushima Bay II. Search for Cause of Mass Mortality and the Possibility to Prevent it by Transplantation Experiment. Bulletin of the Tohoku National Fisheries Research Institute 25: 27–38.
[70]  Li Y, Qin JG, Li XX, Benkendorff K (2009) Spawning-dependent stress responses in pacific oysters Crassostrea gigas: A simulated bacterial challenge in oysters. Aquaculture 293: 164–171. doi: 10.1016/j.aquaculture.2009.04.044
[71]  Renault T, Le Deuff RM, Cochennec N, Maffart P (1994) Herpesviruses associated with mortalities among Pacific oyster, Crassostrea gigas, in France-Comparative study. Revue Méd Vél 145: 735–742.
[72]  Boer SI, Heinemeyer EA, Luden K, Erler R, Gerdts G, et al. (2013) Temporal and Spatial Distribution Patterns of Potentially Pathogenic Vibrio spp. at Recreational Beaches of the German North Sea. Microbial Ecology 65: 1052–1067. doi: 10.1007/s00248-013-0221-4
[73]  Thieltges DW, Engelsma MY, Wendling CC, Wegner KM (2012) Parasites in the Wadden Sea food web. Journal of Sea Research 82: 122–133. doi: 10.1016/j.seares.2012.06.002
[74]  Buchrieser C, Gangar VV, Murphree RL, Tamplin ML, Kaspar CW (1995) Multiple Vibrio vulnificus Strains in Oysters as Demonstrated by Clamped Homogeneous Electric-Field Gel-Electrophoresis. Applied and Environmental Microbiology 61: 1163–1168.
[75]  Jackson JK, Murphree RL, Tamplin ML (1997) Evidence that mortality from Vibrio vulnificus infection results from single strains among heterogeneous populations in shellfish. Journal of Clinical Microbiology 35: 2098–2101.
[76]  Harvell CD, Kim K, Burkholder JM, Colwell RR, Epstein PR, et al. (1999) Emerging marine diseases–climate links and anthropogenic factors. Science 285: 1505–1510. doi: 10.1126/science.285.5433.1505

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133