全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS ONE  2014 

Identification of a Novel G2073A Mutation in 23S rRNA in Amphenicol-Selected Mutants of Campylobacter jejuni

DOI: 10.1371/journal.pone.0094503

Full-Text   Cite this paper   Add to My Lib

Abstract:

Objectives This study was conducted to examine the development and molecular mechanisms of amphenicol resistance in Campylobacter jejuni by using in vitro selection with chloramphenicol and florfenicol. The impact of the resistance development on growth rates was also determined using in vitro culture. Methods Chloramphenicol and florfenicol were used as selection agents to perform in vitro stepwise selection. Mutants resistant to the selective agents were obtained from the selection process. The mutant strains were compared with the parent strain for changes in MICs and growth rates. The 23S rRNA gene and the L4 and L22 ribosomal protein genes in the mutant strains and the parent strain were amplified and sequenced to identify potential resistance-associated mutations. Results C. jejuni strains that were highly resistant to chloramphenicol and florfenicol were obtained from in vitro selection. A novel G2073A mutation in all three copies of the 23S rRNA gene was identified in all the resistant mutants examined, which showed resistance to both chloramphenicol and florfenicol. In addition, all the mutants selected by chloramphenicol also exhibited the G74D modification in ribosomal protein L4, which was previously shown to confer a low-level erythromycin resistance in Campylobacter species. The mutants selected by florfenicol did not have the G74D mutation in L4. Notably, the amphenicol-resistant mutants also exhibited reduced susceptibility to erythromycin, suggesting that the selection resulted in cross resistance to macrolides. Conclusions This study identifies a novel point mutation (G2073A) in 23S rRNA in amphenicol-selected mutants of C. jejuni. Development of amphenicol resistance in Campylobacter likely incurs a fitness cost as the mutant strains showed slower growth rates in antibiotic-free media.

References

[1]  Samuel MC, Vugia DJ, Shallow S, Marcus R, Segler S, et al. (2004) Epidemiology of sporadic Campylobacter infection in the United States and declining trend in incidence, FoodNet 1996–1999. Clin Infect Dis 38: S165–S174. doi: 10.1086/381583
[2]  Zimmer J, Wierzba TF, Abdel-Messih IA, Gharib B, Baqar S, et al. (2008) Campylobacter Infection as a Trigger for Guillain-Barré Syndrome in Egypt. PLoS ONE 3: e3674. doi: 10.1371/journal.pone.0003674
[3]  Islam Z, Gilbert M, Mohammad QD, Klaij K, Li J, et al. (2012) Guillain-Barré Syndrome-Related Campylobacter jejuni in Bangladesh: Ganglioside Mimicry and Cross-Reactive Antibodies. PLoS ONE 7: e43976. doi: 10.1371/journal.pone.0043976
[4]  Allos BM (2001) Campylobacter jejuni Infections: update on emerging issues and trends. Clin Infect Dis 32: 1201–1206. doi: 10.1086/319760
[5]  McGill K, Kelly L, Madden RH, Moran L, Carroll C, et al. (2009) Comparison of disc diffusion and epsilometer (E-test) testing techniques to determine antimicrobial susceptibility of Campylobacter isolates of food and human clinical origin. J Microbiol Methods 79: 238–241. doi: 10.1016/j.mimet.2009.09.020
[6]  Luangtongkum T, Jeon B, Han J, Plummer P, Logue CM, et al. (2009) Antibiotic resistance in Campylobacter: emergence, transmission and persistence. Future Microbiol 4: 189–200. doi: 10.2217/17460913.4.2.189
[7]  Gupta A, Nelson JM, Barrett TJ, Tauxe RV, Rossiter SP, et al. (2004) Antimicrobial resistance among Campylobacter strains, United States, 1997–2001. Emerg Infect Dis 10: 1102. doi: 10.3201/eid1006.030635
[8]  Asai T, Harada K, Ishihara K, Kojima A, Sameshima T, et al. (2007) Association of antimicrobial resistance in Campylobacter isolated from food-producing animals with antimicrobial use on farms. Jpn J Infect Dis 60: 290.
[9]  Bester L, Essack S (2008) Prevalence of antibiotic resistance in Campylobacter isolates from commercial poultry suppliers in KwaZulu-Natal, South Africa. J Antimicrob Chemother 62: 1298–1300. doi: 10.1093/jac/dkn408
[10]  Schwarz S, Kehrenberg C, Doublet B, Cloeckaert A (2004) Molecular basis of bacterial resistance to chloramphenicol and florfenicol. FEMS Microbiol Rev 28: 519–542. doi: 10.1016/j.femsre.2004.04.001
[11]  Mascaretti OA (2003) Bacteria Versus Antibacterial Agents: An Integrated Approach: ASM Press.
[12]  Xie YQ, Zhou ZW, Guo Y, Deng QL, Huang Y (2009) Investigation of Campylobacter jejuni infection in children with diarrhea in Guangzhou. Chinese Journal of Contemporary Pediatrics 11: 422–424.
[13]  Shi X, Wu A, Zheng S, Li R, Zhang D (2007) Molecularly imprinted polymer microspheres for solid-phase extraction of chloramphenicol residues in foods. J Chromatogr B Analyt Technol Biomed Life Sci 850: 24–30. doi: 10.1016/j.jchromb.2006.10.057
[14]  China MoAo (2002) No. 235 Bulletin of the Ministry of Agriculture of the People's Republic of China. Beijing: Ministry of Agriculture of China.
[15]  Barreto F, Ribeiro C, Hoff RB, Costa TD (2012) Determination and confirmation of chloramphenicol in honey, fish and prawns by liquid chromatography–tandem mass spectrometry with minimum sample preparation: validation according to 2002/657/EC Directive. Food Additives & Contaminants Part A 29: 550–558. doi: 10.1080/19440049.2011.641160
[16]  Stolker AA, Brinkman UA (2005) Analytical strategies for residue analysis of veterinary drugs and growth-promoting agents in food-producing animals—a review. J Chromatogr A 1067: 15–53. doi: 10.1016/j.chroma.2005.02.037
[17]  Bostan K, Aydin A, Ang MK (2009) Prevalence and antibiotic susceptibility of thermophilic Campylobacter species on beef, mutton, and chicken carcasses in Istanbul, Turkey. Microb Drug Resist 15: 143–149. doi: 10.1089/mdr.2009.0894
[18]  Bischoff KM, White DG, Hume ME, Poole TL, Nisbet DJ (2005) The chloramphenicol resistance gene cmlA is disseminated on transferable plasmids that confer multiple-drug resistance in swine Escherichia coli. FEMS Microbiol Lett 243: 285–291. doi: 10.1016/j.femsle.2004.12.017
[19]  Kim E, Aoki T (1996) Sequence analysis of the florfenicol resistance gene encoded in the transferable R-plasmid of a fish pathogen, Pasteurella piscicida. Microbiol Immunol 40: 665–669. doi: 10.1111/j.1348-0421.1996.tb01125.x
[20]  Kehrenberg C, Schwarz S (2004) fexA, a novel Staphylococcus lentus gene encoding resistance to florfenicol and chloramphenicol. Antimicrob Agents Chemother 48: 615–618. doi: 10.1128/aac.48.2.615-618.2004
[21]  Liu H, Wang Y, Wu C, Schwarz S, Shen Z, et al. (2012) A novel phenicol exporter gene, fexB, found in enterococci of animal origin. J Antimicrob Chemother 67: 322–325. doi: 10.1093/jac/dkr481
[22]  Lang KS, Anderson JM, Schwarz S, Williamson L, Handelsman J, et al. (2010) Novel florfenicol and chloramphenicol resistance gene discovered in Alaskan soil by using functional metagenomics. Appl Environ Microbiol 76: 5321–5326. doi: 10.1128/aem.00323-10
[23]  Ettayebi M, Prasad SM, Morgan EA (1985) Chloramphenicol-erythromycin resistance mutations in a 23S rRNA gene of Escherichia coli. J Bacteriol 162: 551–557.
[24]  Schwarz S, Werckenthin C, Kehrenberg C (2000) Identification of a plasmid-borne chloramphenicol-florfenicol resistance gene in Staphylococcus sciuri. Antimicrob Agents Chemother 44: 2530–2533. doi: 10.1128/aac.44.9.2530-2533.2000
[25]  Harada K, Asai T, Kojima A, Ishihara K, Takahashi T (2006) Role of coresistance in the development of resistance to chloramphenicol in Escherichia coli isolated from sick cattle and pigs. Am J Vet Res 67: 230–235. doi: 10.2460/ajvr.67.2.230
[26]  Li XS, Wang GQ, Du XD, Cui BA, Zhang SM, et al. (2007) Antimicrobial susceptibility and molecular detection of chloramphenicol and florfenicol resistance among Escherichia coli isolates from diseased chickens. J Vet Sci 8: 243–247. doi: 10.4142/jvs.2007.8.3.243
[27]  Nagshetty K, Channappa ST, Gaddad SM (2010) Antimicrobial susceptibility of Salmonella Typhi in India. J Infect Dev Ctries 4: 70–73. doi: 10.3855/jidc.109
[28]  Englen MD, Hill AE, Dargatz DA, Ladely SR, Fedorka-Cray PJ (2007) Prevalence and antimicrobial resistance of Campylobacter in US dairy cattle. J Appl Microbiol 102: 1570–1577. doi: 10.1111/j.1365-2672.2006.03189.x
[29]  Perez-Boto D, Garcia-Pena FJ, Abad-Moreno JC, Echeita MA (2013) Antimicrobial Susceptibilities of Campylobacter jejuni and Campylobacter coli Strains Isolated from Two Early Stages of Poultry Production. Microb Drug Resist 19: 323–330. doi: 10.1089/mdr.2012.0160
[30]  Ozawa M, Makita K, Tamura Y, Asai T (2012) Associations of antimicrobial use with antimicrobial resistance in Campylobacter coli from grow-finish pigs in Japan. Prev Vet Med 106: 295–300. doi: 10.1016/j.prevetmed.2012.03.013
[31]  Chakeri A, Foroushani MSH, Torki Z, Rahimi E, Ebadi AG (2012) Antimicrobial Resistance of Campylobacter Species Isolated from Fecal Samples from Cats and Dogs in Iran. J Pure Appl Microbiol 6: 1823–1827.
[32]  Shin E, Oh Y, Kim M, Jung J, Lee Y (2013) Antimicrobial resistance patterns and corresponding multilocus sequence types of the Campylobacter jejuni isolates from human diarrheal samples. Microb Drug Resist 19: 110–116. doi: 10.1089/mdr.2012.0099
[33]  de Moura HM, Silva PR, da Silva PH, Souza NR, Racanicci AM, et al. (2013) Antimicrobial resistance of Campylobacter jejuni isolated from chicken carcasses in the Federal District, Brazil. J Food Prot 76: 691–693. doi: 10.4315/0362-028x.jfp-12-485
[34]  Chen X, Naren GW, Wu CM, Wang Y, Dai L, et al. (2010) Prevalence and antimicrobial resistance of Campylobacter isolates in broilers from China. Vet Microbiol 144: 133–139. doi: 10.1016/j.vetmic.2009.12.035
[35]  Adzitey F, Rusul G, Huda N, Cogan T, Corry J (2012) Prevalence, antibiotic resistance and RAPD typing of Campylobacter species isolated from ducks, their rearing and processing environments in Penang, Malaysia. Int J Food Microbiol 154: 197–205. doi: 10.1016/j.ijfoodmicro.2012.01.006
[36]  Wang Y, Taylor DE (1990) Chloramphenicol resistance in Campylobacter coli: nucleotide sequence, expression, and cloning vector construction. Gene 94: 23–28. doi: 10.1016/0378-1119(90)90463-2
[37]  Schwarz S, Kehrenberg C, Doublet B, Cloeckaert A (2004) Molecular basis of bacterial resistance to chloramphenicol and florfenicol. FEMS Microbiol Rev 28: 519–542. doi: 10.1016/j.femsre.2004.04.001
[38]  CLSI (2008) Performance Standards for Antimicrobial disk and dilution susceptibility tests for bacteria isolated from animals; Approved Standard-Third Edition. CLSI document M31-A3. Pennsylvania: Clinical and Laboratory Standards Institute.
[39]  Food and Drug Administration (2010) National Antimicrobial Resistance Monitoring System-Enteric Bacteria (NARMS): 2007 Executive Report. Rockville, MD, U.S.: Department of Health and Human Services, U.S. FDA.
[40]  Gibreel A, Wetsch NM, Taylor DE (2007) Contribution of the CmeABC efflux pump to macrolide and tetracycline resistance in Campylobacter jejuni. Antimicrob Agents Chemother 51: 3212–3216. doi: 10.1128/aac.01592-06
[41]  Gibreel A, Kos VN, Keelan M, Trieber CA, Levesque S, et al. (2005) Macrolide resistance in Campylobacter jejuni and Campylobacter coli: molecular mechanism and stability of the resistance phenotype. Antimicrob Agents Chemother 49: 2753–2759. doi: 10.1128/aac.49.7.2753-2759.2005
[42]  Cagliero C, Mouline C, Cloeckaert A, Payot S (2006) Synergy between efflux pump CmeABC and modifications in ribosomal proteins L4 and L22 in conferring macrolide resistance in Campylobacter jejuni and Campylobacter coli. Antimicrob Agents Chemother 50: 3893–3896. doi: 10.1128/aac.00616-06
[43]  Caldwell DB, Wang Y, Lin J (2008) Development, stability, and molecular mechanisms of macrolide resistance in Campylobacter jejuni. Antimicrob Agents Chemother 52: 3947–3954. doi: 10.1128/aac.00450-08
[44]  Hao H, Dai M, Wang Y, Peng D, Liu Z, et al. (2009) 23S rRNA mutation A2074C conferring high-level macrolide resistance and fitness cost in Campylobacter jejuni. Microb Drug Resist 15: 239–244. doi: 10.1089/mdr.2009.0008
[45]  Rzewuska K, Korsak D, Mackiw E (2010) Antibiotic resistance of bacteria Campylobacter sp. Przegl Epidemiol 64: 63–68.
[46]  Luangtongkum T, Jeon B, Han J, Plummer P, Logue CM, et al. (2009) Antibiotic resistance in Campylobacter: emergence, transmission and persistence. Future Microbiol 4: 189–200. doi: 10.2217/17460913.4.2.189
[47]  Alfredson DA, Korolik V (2007) Antibiotic resistance and resistance mechanisms in Campylobacter jejuni and Campylobacter coli. FEMS Microbiol Lett 277: 123–32. doi: 10.1111/j.1574-6968.2007.00935.x
[48]  McDermott PF, Bodeis SM, Aarestrup FM, Brown S, Traczewski M, et al. (2004) Development of a standardized susceptibility test for Campylobacter with quality-control ranges for ciprofloxacin, doxycycline, erythromycin, gentamicin, and meropenem. Microb Drug Resist 10: 124–131. doi: 10.1089/1076629041310064
[49]  H?nninen M-L, Hannula M (2007) Spontaneous mutation frequency and emergence of ciprofloxacin resistance in Campylobacter jejuni and Campylobacter coli. J Antimicrob Chemother 60: 1251–1257. doi: 10.1093/jac/dkm345
[50]  Donaldson SC, Straley BA, Hegde NV, Sawant AA, DebRoy C, et al. (2006) Molecular Epidemiology of Ceftiofur-Resistant Escherichia coli Isolates from Dairy Calves. Appl Environ Microbiol 72: 3940–3948. doi: 10.1128/aem.02770-05
[51]  Arcangioli MA, Leroy-Setrin S, Martel JL, Chaslus-Dancla E (2000) Evolution of chloramphenicol resistance, with emergence of cross-resistance to florfenicol, in bovine Salmonella Typhimurium strains implicates definitive phage type (DT) 104. J Med Microbiol 49: 103–110.
[52]  Noormohamed A, Fakhr MK (2012) Incidence and Antimicrobial Resistance Profiling of Campylobacter in Retail Chicken Livers and Gizzards. Foodborne Pathog Dis 9: 617–624. doi: 10.1089/fpd.2011.1074
[53]  Switala M, Hrynyk R, Smutkiewicz A, Jaworski K, Pawlowski P, et al. (2007) Pharmacokinetics of florfenicol, thiamphenicol, and chloramphenicol in turkeys. J Vet Pharmacol Ther 30: 145–150. doi: 10.1111/j.1365-2885.2007.00827.x
[54]  Harms J, Schluenzen F, Zarivach R, Bashan A, Gat S, et al. (2001) High resolution structure of the large ribosomal subunit from a mesophilic eubacterium. Cell 107: 679–688. doi: 10.1016/s0092-8674(01)00546-3
[55]  Serraino A, Florio D, Giacometti F, Piva S, Mion D, et al. (2013) Presence of Campylobacter and Arcobacter species in in-line milk filters of farms authorized to produce and sell raw milk and of a water buffalo dairy farm in Italy. J Dairy Sci 96: 2801–2807. doi: 10.4315/0362-028x.jfp-12-028
[56]  Oporto B, Juste RA, Hurtado A (2009) Phenotypic and Genotypic Antimicrobial Resistance Profiles of Campylobacter jejuni Isolated from Cattle, Sheep, and Free-Range Poultry Faeces. Int J Microbiol 2009: 456573. doi: 10.1155/2009/456573
[57]  Douthwaite S (1992) Functional interactions within 23S rRNA involving the peptidyltransferase center. J Bacteriol 174: 1333–1338.
[58]  Luo N, Pereira S, Sahin O, Lin J, Huang S, et al. (2005) Enhanced in vivo fitness of fluoroquinolone-resistant Campylobacter jejuni in the absence of antibiotic selection pressure. Proc Natl Acad Sci USA 102: 541–546. doi: 10.1073/pnas.0408966102
[59]  Zhang Q, Sahin O, McDermott PF, Payot S (2006) Fitness of antimicrobial-resistant Campylobacter and Salmonella. Microbes Infect 8: 1972–1978. doi: 10.1016/j.micinf.2005.12.031
[60]  Luangtongkum T, Shen Z, Seng VW, Sahin O, Jeon B, et al. (2012) Impaired fitness and transmission of macrolide-resistant Campylobacter jejuni in its natural host. Antimicrob Agents Chemother 56: 1300–1308. doi: 10.1128/aac.05516-11

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133