全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS ONE  2014 

Adjudicated Morbidity and Mortality Outcomes by Age among Individuals with HIV Infection on Suppressive Antiretroviral Therapy

DOI: 10.1371/journal.pone.0095061

Full-Text   Cite this paper   Add to My Lib

Abstract:

Background Non-AIDS conditions such as cardiovascular disease and non-AIDS defining cancers dominate causes of morbidity and mortality among persons with HIV on suppressive combination antiretroviral therapy. Accurate estimates of disease incidence and of risk factors for these conditions are important in planning preventative efforts. Methods With use of medical records, serious non-AIDS events, AIDS events, and causes of death were adjudicated using pre-specified criteria by an Endpoint Review Committee in two large international trials. Rates of serious non-AIDS which include cardiovascular disease, end-stage renal disease, decompensated liver disease, and non-AIDS cancer, and other serious (grade 4) adverse events were determined, overall and by age, over a median follow-up of 4.3 years for 3,570 participants with CD4+ cell count ≥300 cells/mm3 who were taking antiretroviral therapy and had an HIV RNA level ≤500 copies/mL. Cox models were used to examine the effect of age and other baseline factors on risk of a composite outcome of all-cause mortality, AIDS, or serious non-AIDS. Results Five-year Kaplan-Meier estimates of the composite outcome, overall and by age were 8.3% (overall), 3.6% (<40), 8.7% (40–49) and 16.1% (≥50), respectively (p<0.001). In addition to age, smoking and higher levels of interleukin-6 and D-dimer were significant predictors of the composite outcome. The composite outcome was dominated by serious non-AIDS events (overall 65% of 277 participants with a composite event). Most serious non-AIDS events were due to cardiovascular disease and non-AIDS cancers. Conclusions To date, few large studies have carefully collected data on serious non-AIDS outcomes. Thus, reliable estimates of event rates are scarce. Data cited here, from a geographically diverse cohort, will be useful for planning studies of interventions aimed at reducing rates of serious non-AIDS events among people with HIV.

References

[1]  Mocroft A, Brettle R, Kirk O, Blaxhult A, Parkin JM, et al. (2002) Changes in the cause of death among HIV positive subjects across Europe: results from the EuroSIDA study. AIDS 16: 1663–1671. doi: 10.1097/00002030-200208160-00012
[2]  Butt AA, Chang CC, Kuller L, Goetz MB, Leaf D, et al. (2011) Risk of heart failure with human immunodeficiency virus in the absence of prior diagnosis of coronary heart disease. Arch Intern Med 171: 737–743. doi: 10.1001/archinternmed.2011.151
[3]  Obel N, Thomsen HF, Kronborg G, Larsen CS, Hildebrandt PR, et al. (2007) Ischemic heart disease in HIV-infected and HIV-uninfected individuals: a population-based cohort study. Clin Infect Dis 44: 1625–1631. doi: 10.1086/518285
[4]  Triant VA, Lee H, Hadigan C, Grinspoon SK (2007) Increased acute myocardial infarction rates and cardiovascular risk factors among patients with human immunodeficiency virus disease. J Clin Endocrinol Metab 92: 2506–2512. doi: 10.1210/jc.2006-2190
[5]  Freiberg MS, Chang CC, Kuller LH, Skanderson M, Lowy E, et al. (2013) HIV infection and the risk of acute myocardial infarction. JAMA Intern Med 173: 614–622. doi: 10.1001/jamainternmed.2013.3728
[6]  Chow FC, Regan S, Feske S, Meigs JB, Grinspoon SK, et al. (2012) Comparison of ischemic stroke incidence in HIV-infected and non-HIV-infected patients in a US health care system. JAIDS 60: 351–358. doi: 10.1097/qai.0b013e31825c7f24
[7]  Bedimo RJ, McGinnis KA, Dunlap M, Rodriguez-Barradas MC, Justice AC (2009) Incidence of non-AIDS-defining malignancies in HIV-infected versus noninfected patients in the HAART era: impact of immunosuppression. JAIDS 52: 203–208. doi: 10.1097/qai.0b013e3181b033ab
[8]  McGinnis KA, Fultz SL, Skanderson M, Conigliaro J, Bryant K, et al. (2006) Hepatocellular carcinoma and non-Hodgkin's lymphoma: the roles of HIV, hepatitis C infection, and alcohol abuse. J Clin Oncol 24: 5005–5009. doi: 10.1200/jco.2006.05.7984
[9]  Patel P, Hanson DL, Sullivan PS, Novak RM, Moorman AC, et al. (2008) Incidence of types of cancer among HIV-infected persons compared with the general population in the United States, 1992–2003. Ann Internal Med 148: 728–736. doi: 10.7326/0003-4819-148-10-200805200-00005
[10]  Deeks SG, Tracy R, Douek DC (2013) Systemic effects of inflammation on health during chronic HIV infection. Immunity 39: 633–645. doi: 10.1016/j.immuni.2013.10.001
[11]  CDC (2008) Diagnoses of HIV infection and AIDS in the United States and dependent areas, 2008. HIV Surveillance Reports 20.
[12]  CDC (2009) Diagnoses of HIV infection and AIDS in the United States and dependent areas, 2009. HIV Surveillance Reports 21.
[13]  Health Protection Agency (2010) HIV in the United Kingdom: 2010 report. Health Protection Report 4.
[14]  Abrams D, Levy Y, Losso MH, Babiker A, Collins G, et al. (2009) Interleukin-2 therapy in patients with HIV infection. NEJM 361: 1548–1559.
[15]  El-Sadr WM, Grund B, Neuhaus J, Babiker A, Cohen CJ, et al. (2008) Risk for opportunistic disease and death after reinitiating continuous antiretroviral therapy in patients with HIV previously receiving episodic therapy: a randomized trial. Ann Intern Med 149: 289–299. doi: 10.7326/0003-4819-149-5-200809020-00003
[16]  El-Sadr WM, Lundgren JD, Neaton JD, Gordin F, Abrams D, et al. (2006) CD4+ count-guided interruption of antiretroviral treatment. NEJM 355: 2283–2296. doi: 10.1056/nejmoa062360
[17]  Panel on Antiretroviral Guidelines for Adults and Adolescents (2012) Guidelines for the use of antiretroviral agents in HIV-1 infected adults and adolescents. Department of Health and Human Services. Available: http://aidsinfo.nih.gov/contentfiles/lvg?uidelines/AdultandAdolescentGL.pdf. Accessed 2013 Nov 8.
[18]  Lifson AR, Belloso WH, Davey RT, Duprez D, Gatell JM, et al. (2010) Development of diagnostic criteria for serious non-AIDS events in HIV clinical trials. HIV Clin Trials 11: 205–219. doi: 10.1310/hct1104-205
[19]  Lifson AR, Rhame FS, Belloso WH, Dragsted UB, El-Sadr WM, et al. (2006) Reporting and evaluation of HIV-related clinical endpoints in two multicenter international clinical trials. HIV Clin Trials 7: 125–141. doi: 10.1310/7mer-xfa7-1762-e2wr
[20]  Copenhagen HIV Programme (2005) Coding Causes of Death in HIV Protocol. Available: http://www.chip.dk/Portals/_default/pdf_?folder/code_protocol_ver_1.0.pdf. Accessed 2013 Nov 8.
[21]  Lifson AR, Belloso WH, Carey C, Davey RT, Duprez D, et al. (2008) Determination of the underlying cause of death in three multicenter international HIV clinical trials. HIV Clin Trials 9: 177–185. doi: 10.1310/hct0903-177
[22]  Levey AS, Stevens LA, Schmid CH, Zhang YL, Castro AF 3rd, et al. (2009) A new equation to estimate glomerular filtration rate. Ann Intern Med 150: 604–612. doi: 10.7326/0003-4819-150-9-200905050-00006
[23]  Kuller LH, Tracy R, Belloso W, De Wit S, Drummond F, et al. (2008) Inflammatory and coagulation biomarkers and mortality in patients with HIV infection. PLoS Med 5: e203. doi: 10.1371/journal.pmed.0050203
[24]  Lane HC (2010) Baseline D-dimer levels identify a subset of patients at higher risk of death following IL-2 administration. 18th Conference on Retroviruses and Opportunistic Infections. Boston, MA.
[25]  Friis-Moller N, Sabin CA, Weber R, d'Arminio Monforte A, El-Sadr WM, et al. (2003) Combination antiretroviral therapy and the risk of myocardial infarction. NEJM 349: 1993–2003. doi: 10.1097/00002030-200305230-00010
[26]  Poirier P, Giles TD, Bray GA, Hong Y, Stern JS, et al. (2006) Obesity and cardiovascular disease: pathophysiology, evaluation, and effect of weight loss: an update of the 1997 American Heart Association Scientific Statement on Obesity and Heart Disease from the Obesity Committee of the Council on Nutrition, Physical Activity, and Metabolism. Circulation 113: 898–918. doi: 10.1161/circulationaha.106.171016
[27]  Borges AH, Silverberg MJ, Wentworth D, Grulich AE, Fatkenheuer G, et al. (2013) Predicting risk of cancer during HIV infection: the role of inflammatory and coagulation biomarkers. AIDS 27: 1433–1441. doi: 10.1097/qad.0b013e32835f6b0c
[28]  Duprez DA, Neuhaus J, Kuller LH, Tracy R, Belloso W, et al. (2012) Inflammation, coagulation and cardiovascular disease in HIV-infected individuals. PloS ONE 7: e44454. doi: 10.1371/journal.pone.0044454
[29]  Grund B, Baker JV, Deeks S, Wolfson J, Wentworth D, et al.. Combined effect of interleukin-6 and D-dimer on the risk of serious non-AIDS conditions: data from 3 prospective cohorts; 2013.
[30]  Babiker AG, Emery S, Fatkenheuer G, Gordin FM, Grund B, et al. (2013) Considerations in the rationale, design and methods of the Strategic Timing of AntiRetroviral Treatment (START) study. Clin Trials 10: S5–S36. doi: 10.1177/1740774512440342
[31]  Lonn E, Bosch J, Teo KK, Pais P, Xavier D, et al. (2010) The polypill in the prevention of cardiovascular diseases: key concepts, current status, challenges, and future directions. Circulation 122: 2078–2088. doi: 10.1161/circulationaha.109.873232
[32]  Psaty BM (2010) Drug therapies for the primary prevention of cardiovascular events: trials and errors: 2009 Ancel Keys Memorial Lecture. Circulation 121: 940–945. doi: 10.1161/circulationaha.109.933705
[33]  Reisler RB, Han C, Burman WJ, Tedaldi EM, Neaton JD (2003) Grade 4 events are as important as AIDS events in the era of HAART. JAIDS 34: 379–386. doi: 10.1097/00126334-200312010-00004

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133