全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS ONE  2014 

Cellular Processing of Myocilin

DOI: 10.1371/journal.pone.0092845

Full-Text   Cite this paper   Add to My Lib

Abstract:

Background Myocilin (MYOC) is a gene linked directly to juvenile- and adult-onset open angle glaucoma. Mutations including Pro370Leu (P370L) and Gln368stop (Q368X) have been identified in patients. In the present study, we investigated the processing of myocilin in human trabecular meshwork (TM) cells as well as in inducible, stable RGC5 cell lines. Methodology/Principal Findings The turnover and photoactivation experiments revealed that the endogenous myocilin in human trabecular meshwork (TM) cells was a short-lived protein. It was found that the endogenous myocilin level in TM cells was increased by treatment of lysosomal and proteasomal inhibitors, but not by autophagic inhibitor. Multiple bands immunoreactive to anti-ubiquitin were seen in the myocilin pull down, indicating that myocilin was ubiquitinated. In inducible cell lines, the turnover rate of overexpressed wild-type and mutant P370L and Q368X myocilin-GFP fusion proteins was much prolonged. The proteasome function was compromised and autophagy was induced. A decreased PSMB5 level and an increased level of autophagic marker, LC3, were demonstrated. Conclusions/Significance The current study provided evidence that in normal homeostatic situation, the turnover of endogenous myocilin involves ubiquitin-proteasome and lysosomal pathways. When myocilin was upregulated or mutated, the ubiquitin-proteasome function is compromised and autophagy is induced. Knowledge of the degradation pathways acting on myocilin can help in design of novel therapeutic strategies for myocilin-related glaucoma.

References

[1]  Quigley HA (2011) Glaucoma. Lancet 377: 1367–1377. doi: 10.1016/s0140-6736(10)61423-7
[2]  Kwon YH, Fingert JH, Kuehn MH, Alward WLM (2009) Primary open-angle glaucoma. N Engl J Med 360: 1113–1124. doi: 10.1056/nejmra0804630
[3]  Bill A (1975) The drainage of aqueous humor. Invest Ophthalmol Vis Sci 14: 1–3.
[4]  Stamer WD, Acott TS (2012) Current understanding of conventional outflow dysfunction in glaucoma. Curr Opin Ophthalmol 23: 135–143. doi: 10.1097/icu.0b013e32834ff23e
[5]  Allingham RR, Liu Y, Rhee DJ (2009) The genetics of primary open-angle glaucoma: a review. Exp Eye Res 88: 837–844. doi: 10.1016/j.exer.2008.11.003
[6]  Fingert JH (2011) Primary open-angle glaucoma genes. Eye (London) 25: 587–595. doi: 10.1038/eye.2011.97
[7]  Wiggs JL (2012) The cell and molecular biology of complex forms of glaucoma: updates on genetic, environmental, and epigenetic risk factors. Invest Ophthalmol Vis Sci 53: 2467–2469. doi: 10.1167/iovs.12-9483e
[8]  Sheffield VC, Stone EM, Alward WL, Drack AV, Johnson AT, et al. (1993) Genetic linkage of familial open angle glaucoma to chromosome 1q21–q31. Nat Genet 4: 47–50. doi: 10.1038/ng0593-47
[9]  Stone EM, Fingert JH, Alward WL, Nguyen TD, Polansky JR, et al. (1997) Identification of a gene that causes primary open angle glaucoma. Science 275: 668–670. doi: 10.1126/science.275.5300.668
[10]  Sarfarazi M, Child A, Stoilova D, Brice G, Desai T, et al. (1998) Localization of the fourth locus (GLC1E) for adult-onset primary open-angle glaucoma to the 10p15-p14 region. Am J Hum Genet 62: 641–652. doi: 10.1086/301767
[11]  Rezaie T, Child A, Hitchings R, Brice G, Miller L, et al. (2002) Adult-onset primary open-angle glaucoma caused by mutations in optineurin. Science 295: 1077–1079. doi: 10.1126/science.1066901
[12]  Polansky JR, Fauss DJ, Chen P, Chen H, Lutjen-Drecoll E, et al. (1997) Cellular pharmacology and molecular biology of the trabecular meshwork inducible glucocorticoid response gene product. Ophthalmologica 211: 126–139. doi: 10.1159/000310780
[13]  Nguyen TD, Chen P, Huang WD, Chen H, Johnson D, et al. (1998) Gene structure and properties of TIGR, an olfactomedin-related glycoprotein cloned from glucocorticoid-induced trabecular meshwork cells. J Biol Chem 273: 6341–6350. doi: 10.1074/jbc.273.11.6341
[14]  Resch ZT, Fautsch MOP (2009) Glaucoma-associated myocilin: A better understanding but much more to learn. Exp Eye Res 88: 704–712. doi: 10.1016/j.exer.2008.08.011
[15]  Hardy KM, Hoffman EA, Gonzalez P, McKay BS, Stamer WD (2005) Extracellular trafficking of myocilin in human trabecular meshwork cells. J Biol Chem 280: 28917–28926. doi: 10.1074/jbc.m504803200
[16]  Yue BYJT (2011) Myocilin and optineurin: differential characteristics and functional consequences. Taiwan J Ophthalmol 1: 6–11. doi: 10.1016/j.tjo.2011.08.002
[17]  Aroca-Aguilar JD, Martínez-Redondo F, Martín-Gil A, Pintor J, Coca-Prados M, et al. 013) Bicarbonate-dependent secretion and proteolytic processing of recombinant myocilin. PLoS One 8: e54385. doi: 10.1371/journal.pone.0054385
[18]  Aroca-Aguilar JD, Sanchez-Sanchez F, Ghosh S, Coca-Prados M, Escribano J (2005) Myocilin mutations causing glaucoma inhibit the intracellular endoproteolytic cleavage of myocilin between amino acids Arg226 and Ile227. J Biol Chem 280: 21043–21051. doi: 10.1074/jbc.m501340200
[19]  Aroca-Aguilar JD, Sánchez-Sánchez F, Ghosh S, Fernández-Navarro A, Coca-Prados M, et al. (2011) Interaction of recombinant myocilin with the matricellular protein SPARC: functional implications. Invest Ophthalmol Vis Sci 52: 179–189. doi: 10.1167/iovs.09-4866
[20]  Tamm ER (2002) Myocilin and glaucoma: facts and ideas. Prog Retin Eye Res 21: 395–428. doi: 10.1016/s1350-9462(02)00010-1
[21]  Wentz-Hunter K, Ueda J, Yue BYJT (2002) Protein interactions with myocilin. Invest Ophthalmol Vis Sci 43: 176–182.
[22]  Fautsch MP, Vrabel AM, Johnson DH (2006) The identification of myocilin-associated proteins in the human trabecular meshwork. Exp Eye Res 82: 1046–1052. doi: 10.1016/j.exer.2005.09.016
[23]  Ueda J, Wentz-Hunter K, Cheng EL, Fukuchi T, Abe H, et al. (2000) Ultrastructural localization of myocilin in human trabecular meshwork cells and tissues. J Histochem Cytochem 48: 1321–1329. doi: 10.1177/002215540004801003
[24]  Adam MF, Belmouden A, Binisti P, Brezin AP, Valtot F, et al. (1997) Recurrent mutations in a single exon encoding the evolutionarily conserved olfactomedin-homology domain of TIGR in familial open-angle glaucoma. Hum Mol Genet 6: 2091–2097. doi: 10.1093/hmg/6.12.2091
[25]  Rozsa FW, Shimizu S, Lichter PR, Johnson AT, Othman MI, et al. (1998) GLC1A mutations point to regions of potential functional importance on the TIGR/MYOC protein. Mol Vis 4: 20.
[26]  Shimizu S, Lichter PR, Johnson AT, Zhou Z, Higashi M, et al. (2000) Age-dependent prevalence of mutations at the GLC1A locus in primary open-angle glaucoma. Am J Ophthalmol 130: 165–177. doi: 10.1016/s0002-9394(00)00536-5
[27]  Fingert JH, Heon E, Liebmann JM, Yamamoto T, Craig JE, et al. (1999) Analysis of myocilin mutations in 1703 glaucoma patients from five different populations. Hum Mol Genet 8: 899–905. doi: 10.1093/hmg/8.5.899
[28]  Jacobson N, Andrews M, Shepard AR, Nishimura D, Searby C, et al. (2001) Non-secretion of mutant proteins of the glaucoma gene myocilin in cultured trabecular meshwork cells and in aqueous humor. Hum Mol Genet 10: 117–125. doi: 10.1093/hmg/10.2.117
[29]  Liu Y, Vollrath D (2004) Reversal of mutant myocilin non-secretion and cell killing: implications for glaucoma. Hum Mol Genet 13: 1193–1204. doi: 10.1093/hmg/ddh128
[30]  Yam GH, Gaplovska-Kysela K, Zuber C, Roth J (2007) Aggregated myocilin induces russell bodies and causes apoptosis: implications for the pathogenesis of myocilin-caused primary open-angle glaucoma. Am J Pathol 170: 100–109. doi: 10.2353/ajpath.2007.060806
[31]  Fukasawa H (2012) The role of the ubiquitin-proteasome system in kidney diseases. Clin Exp Nephrol 16: 507–517. doi: 10.1007/s10157-012-0643-1
[32]  Ciechanover A (2012) Intracellular protein degradation: from a vague idea thru the lysosome and the ubiquitin-proteasome system and onto human diseases and drug targeting. Biochim Biophys Acta 1824: 3–13. doi: 10.1016/j.bbapap.2011.03.007
[33]  Turk B, Turk B, Turk D (2001) Lyosomal cysteine proteases: facts and opportunities. EMBO J 20: 4629–4633. doi: 10.1093/emboj/20.17.4629
[34]  Glickman MH, Ciechanover A (2002) The ubiquitin-proteasome proteolytic pathway: destruction for the sake of construction. Physiol Rev 82: 373–428.
[35]  Goldberg AL (2003) Protein degradation and protection against misfolded or damaged proteins. Nature 426: 895–899. doi: 10.1038/nature02263
[36]  Yang Z, Klionsky DJ (2010) Mammalian autophagy: core molecular machinery and signaling regulation. Curr opin Cell Biol 22: 124–131. doi: 10.1016/j.ceb.2009.11.014
[37]  Choi AMK, Ryter SW, Levine B (2013) Autophagy in human health and disease. N Engl J Med 368: 651–662. doi: 10.1056/nejmra1205406
[38]  Lippincott-Schwartz J, Patterson GH (2008) Fluorescent proteins for photoactivation experiments. Methods Cell Biol 85: 45–61. doi: 10.1016/s0091-679x(08)85003-0
[39]  Krishnamoorthy RR, Clark AF, Daudt D, Vishwanatha JK, Yorio T (2013) A forensic path to RGC-5 cell line identification: lessons learned. Invest Ophthalmol Vis Sci 54: 5712–5719. doi: 10.1167/iovs.13-12085
[40]  Ying H, Shen X, Yue BYJT (2012) Establishement of Establishment of inducible wild type and mutant myocilin-GFP-expressing RGC5 cell lines. PLoS One 7: e47307. doi: 10.1371/journal.pone.0047307
[41]  Bikkavilli RK, Malbon CC (2010) Dishevelled-KSRP complex regulates Wnt signaling through post-transcriptional stabilization of β-catenin mRNA. J Cell Sci 123: 1352–1362. doi: 10.1242/jcs.056176
[42]  He LQ, Cai F, Liu Y, Tan ZP, Pan Q, et al. (2005) Cx31 is assembled and trafficked to cell surface by ER-Golgi pathway and degraded by proteasomal or lysosomal pathways. Cell Res 15: 455–464. doi: 10.1038/sj.cr.7290314
[43]  Mizushima N, Yoshimori T, Levine B (2010) Methods in mammalian autophagy research. Cell 140 , 313––326.
[44]  Ezzat MK, Howell KG, Bahler CK, Beito TG, Loewen N, et al. (2008) Characterization of monoclonal antibodies against the glaucoma-associated protein myocilin. Exp Eye Res 87: 376–384. doi: 10.1016/j.exer.2008.07.002
[45]  Caballero M, Liton PB, Challa P, Epstein DL, Gonzalez P (2004) Effects of donor age on proteasome activity and senescence in trabecular meshwork cells. Biochem Biophys Res Commun 323 , 1048––1054.
[46]  Van der Horst DJ, Roosendaal SD, Rodenburg KW (2009) Circulatory lipid transport: lipoprotein assembly and function from an evolutionary perspective. Mol Cell Biochem 326: 105–119. doi: 10.1007/s11010-008-0011-3
[47]  Valero RA, Oeste CL, Stamatakis K, Ramos I, Herrera M, et al. (2010) Structural determinants allowing endolysosomal sorting and degradation of endosomal GTPases. Traffic 11: 1221–1233. doi: 10.1111/j.1600-0854.2010.01091.x
[48]  Patterson GH, Lippincott-Schwartz J (2002) A photoactivatable GFP for selective photolabeling of proteins and cells. Science 297: 1873–1877. doi: 10.1126/science.1074952
[49]  Sohn S, Joe MK, Kim TE, Im J, Choi YR, et al. (2009) Dual localization of wild-type myocilin in the endoplasmic reticulum and extracellular compartment likely occurs due to its incomplete secretion. Mol Vis 15: 546–556.
[50]  Noda T, Farquhar MG (1992) A non-autophagic pathway for diversion of ER secretory proteins to lysosomes. J Cell Biol 119: 85–97. doi: 10.1083/jcb.119.1.85
[51]  Cabral CM, Liu Y, Sifers RN (2001) Dissecting glycoprotein quality control in the secretory pathway. Trends Biochem Sci 26: 619–624. doi: 10.1016/s0968-0004(01)01942-9
[52]  Berthoud VM, Minogue PJ, Laing JG, Beyer EC (2004) Pathways for degradation of connexins and gap junctions. Cardiovas Res 62: 256–267. doi: 10.1016/j.cardiores.2003.12.021
[53]  Melikova MS, Kondratov KA, Komilova ES (2006) Two different stages of epidermal growth factor (EGF) receptor endocytosis are sensitive to free ubiquitin depletion produced by proteasome inhibitor MG132. Cell Biol Int 30: 31–43. doi: 10.1016/j.cellbi.2005.09.003
[54]  Plantier J-L, Guillet B, Duxasse C, Enjolras N, Rodriguez M-H, et al. (2005) B-domain deleted factor VIII is aggregated and degraded through proteasomal and lysosomal pathways. Thromb Haemost 93: 824–832. doi: 10.1160/th04-09-0579
[55]  Dunlop RA, Brunk UT, Rodgers KJ (2009) Oxidized proteins: mechanisms of removal and consequences of accumulation. IUBMB Life 61: 522–527. doi: 10.1002/iub.189
[56]  Aoun P, Simpkins JW, Agarwal N (2003) Role of PPAR-γ ligands in neuroprotection against glutamate-induced cytotoxicity in retinal ganglion cells. Invest Ophthalmol Vis Sci 44: 2999–3004. doi: 10.1167/iovs.02-1060
[57]  Agarwal N (2013) RGC-5 cells. Invest Ophthalmol Vis Sci 54: 7884. doi: 10.1167/iovs.13-13292
[58]  Harvey R, Chintala SK (2007) Inhibition of plasminogen activators attenuates the death of differentiated retinal ganglion cells and stabilizes their neurite network in vitro. Invest Ophthalmol Vis Sci 48: 1884–1891. doi: 10.1167/iovs.06-0990
[59]  Van Bergen NJ, Wood JP, Chidlow G, Trounce IA, Casson RJ, et al. (2009) Recharacterization of the RGC-5 retinal ganglion cell line. Invest Ophthalmol Vis Sci 50: 4267–4272. doi: 10.1167/iovs.09-3484
[60]  Chau KY, Ching HL, Schapira AH, Cooper JM (2009) Relationship between α-synuclein phosphorylation, proteasomal inhibition and cell death: relevance to Parkinson's disease pathogenesis. J Neurochem 110: 1005–1013. doi: 10.1111/j.1471-4159.2009.06191.x
[61]  Buchberger A, Bukau B, Sommer T (2010) Protein quality control in the cytosol and the endoplasmic reticulum: brothers in arms. Mol Cell 40: 238–252. doi: 10.1016/j.molcel.2010.10.001
[62]  Ding WX, Ni HM, Gao W, Yoshimori K, Li F, et al. (2007) Linking of autophagy to ubiquitin-proteasome system is important for the regulation of endoplasmic reticulum stress and cell viability. Am J Pathol 171: 513–524. doi: 10.2353/ajpath.2007.070188
[63]  Pandey UB, Nie Z, Batlevi Y, McCray BA, Riltson GP, et al. (2007) HDAC6 rescues neurodegeneration and provides an essential link between autophagy and the UPS. Nature 447: 859–863. doi: 10.1038/nature05853
[64]  Janen SB, Chaachouay H, Ritchter-Landsberg C (2010) Autophagy is activated by proteasomal inhibition and involved in aggresome clearance in cultured astrocytes. Glia 58: 1766–1774. doi: 10.1002/glia.21047
[65]  Wu WK, Sakamoto KM, Milani M, Aldana-Masankgay G, Fan D, et al. (2010) Macroautophagy modulates cellular response to proteasome inhibitors in cancer therapy. Drug Resis Update 13: 87–92. doi: 10.1016/j.drup.2010.04.003
[66]  Riederer BM, Leuba G, Vernay A, Tiederer IM (2011) The role of the ubiquitin proteasome system in Alzheimer's disease. Exp Biol Med (Maywood) 236: 268–276. doi: 10.1258/ebm.2010.010327
[67]  Olanow CW, McNaught KS (2006) Ubiquitin-proteasome system and Parkinson's disease. Mov Disord 21: 1806–1823. doi: 10.1002/mds.21013
[68]  Shen X, Ying H, Qiu Y, Shyam R, Park J, et al. (2011) Cellular processing of optineurin in neuronal cells. J Biol Chem 286: 3618–3629. doi: 10.1074/jbc.m110.175810
[69]  Carbone MA, Ayroles JF, Yamamoto A, Morozova TV, West SA, et al. (2009) Overexpression of myocilin in the Drosophila eye activates the unfolded protein response: implications for glaucoma. PLoS One 4: e4216. doi: 10.1371/journal.pone.0004216
[70]  Anholt RR, Carbone MA (2013) A molecular mechanism for glaucoma: endoplasmic reticulum stress and the unfolded protein response. Trends Mol Med 19: 586–593. doi: 10.1016/j.molmed.2013.06.005
[71]  Choi J, Miller AM, Nolan MJ, Yue BY, Thotz ST, et al. (2005) Soluble CD44 is cytotoxic to trabecular meshwork and retinal ganglion cells in vitro. Invest Ophthalmol Vis Sci 46: 214–222. doi: 10.1167/iovs.04-0765

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133