[1] | Adam RD (2001) Biology of Giardia lamblia. Clinical microbiology reviews 14: 447–475. doi: 10.1128/cmr.14.3.447-475.2001
|
[2] | Prucca CG, Slavin I, Quiroga R, Elias EV, Rivero FD, et al. (2008) Antigenic variation in Giardia lamblia is regulated by RNA interference. Nature 456: 750–754. doi: 10.1038/nature07585
|
[3] | Nash TE (1989) Antigenic variation in Giardia lamblia. Exp Parasitol 68: 238–241. doi: 10.1016/0014-4894(89)90104-5
|
[4] | Soltys BJ, Falah M, Gupta RS (1996) Identification of endoplasmic reticulum in the primitive eukaryote Giardia lamblia using cryoelectron microscopy and antibody to Bip. J Cell Sci 109 (Pt 7): 1909–1917.
|
[5] | Tovar J, Leon-Avila G, Sanchez LB, Sutak R, Tachezy J, et al. (2003) Mitochondrial remnant organelles of Giardia function in iron-sulphur protein maturation. Nature 426: 172–176. doi: 10.1038/nature01945
|
[6] | Regoes A, Hehl AB (2005) SNAP-tag mediated live cell labeling as an alternative to GFP in anaerobic organisms. Biotechniques 39: 809–810, 812.
|
[7] | Feely DE, Dyer JK (1987) Localization of acid phosphatase activity in Giardia lamblia and Giardia muris trophozoites. J Protozool 34: 80–83. doi: 10.1111/j.1550-7408.1987.tb03137.x
|
[8] | Abodeely M, DuBois KN, Hehl A, Stefanic S, Sajid M, et al. (2009) A contiguous compartment functions as endoplasmic reticulum and endosome/lysosome in Giardia lamblia. Eukaryot Cell 8: 1665–1676. doi: 10.1128/ec.00123-09
|
[9] | Lindmark DG (1988) Giardia lamblia: localization of hydrolase activities in lysosome-like organelles of trophozoites. Exp Parasitol 65: 141–147. doi: 10.1016/0014-4894(88)90116-6
|
[10] | Touz MC, Nores MJ, Slavin I, Carmona C, Conrad JT, et al. (2002) The activity of a developmentally regulated cysteine proteinase is required for cyst wall formation in the primitive eukaryote Giardia lamblia. The Journal of biological chemistry 277: 8474–8481. doi: 10.1074/jbc.m110250200
|
[11] | Ward W, Alvarado L, Rawlings ND, Engel JC, Franklin C, et al. (1997) A primitive enzyme for a primitive cell: the protease required for excystation of Giardia. Cell 89: 437–444. doi: 10.1016/s0092-8674(00)80224-x
|
[12] | Lanfredi-Rangel A, Attias M, de Carvalho TM, Kattenbach WM, De Souza W (1998) The peripheral vesicles of trophozoites of the primitive protozoan Giardia lamblia may correspond to early and late endosomes and to lysosomes. J Struct Biol 123: 225–235. doi: 10.1006/jsbi.1998.4035
|
[13] | Touz MC, Lujan HD, Hayes SF, Nash TE (2003) Sorting of encystation-specific cysteine protease to lysosome-like peripheral vacuoles in Giardia lamblia requires a conserved tyrosine-based motif. The Journal of biological chemistry 278: 6420–6426. doi: 10.1074/jbc.m208354200
|
[14] | Bockman DE, Winborn WB (1968) Electron microscopic localization of exogenous ferritin within vacuoles of Giardia muris. J Protozool 15: 26–30. doi: 10.1111/j.1550-7408.1968.tb02085.x
|
[15] | Touz MC, Rivero MR, Miras SL, Bonifacino JS (2012) Lysosomal protein trafficking in Giardia lamblia: common and distinct features. Front Biosci (Elite Ed) 4: 1898–1909. doi: 10.2741/e511
|
[16] | Gaechter V, Schraner E, Wild P, Hehl AB (2008) The single dynamin family protein in the primitive protozoan Giardia lamblia is essential for stage conversion and endocytic transport. Traffic 9: 57–71. doi: 10.1111/j.1600-0854.2007.00657.x
|
[17] | Touz MC, Kulakova L, Nash TE (2004) Adaptor protein complex 1 mediates the transport of lysosomal proteins from a Golgi-like organelle to peripheral vacuoles in the primitive eukaryote Giardia lamblia. Mol Biol Cell 15: 3053–3060. doi: 10.1091/mbc.e03-10-0744
|
[18] | Rivero MR, Vranych CV, Bisbal M, Maletto BA, Ropolo AS, et al. (2010) Adaptor protein 2 regulates receptor-mediated endocytosis and cyst formation in Giardia lamblia. Biochem J 428: 33–45. doi: 10.1042/bj20100096
|
[19] | Rivero MR, Miras SL, Quiroga R, Ropolo AS, Touz MC (2011) Giardia lamblia low-density lipoprotein receptor-related protein is involved in selective lipoprotein endocytosis and parasite replication. Mol Microbiol 79: 1204–1219. doi: 10.1111/j.1365-2958.2010.07512.x
|
[20] | Marti M, Li Y, Schraner EM, Wild P, Kohler P, et al. (2003) The secretory apparatus of an ancient eukaryote: protein sorting to separate export pathways occurs before formation of transient Golgi-like compartments. Mol Biol Cell 14: 1433–1447. doi: 10.1091/mbc.e02-08-0467
|
[21] | Lujan HD, Mowatt MR, Conrad JT, Bowers B, Nash TE (1995) Identification of a novel Giardia lamblia cyst wall protein with leucine-rich repeats. Implications for secretory granule formation and protein assembly into the cyst wall. The Journal of biological chemistry 270: 29307–29313. doi: 10.1074/jbc.270.49.29307
|
[22] | Mowatt MR, Lujan HD, Cotten DB, Bowers B, Yee J, et al. (1995) Developmentally regulated expression of a Giardia lamblia cyst wall protein gene. Mol Microbiol 15: 955–963. doi: 10.1111/j.1365-2958.1995.tb02364.x
|
[23] | Sun CH, McCaffery JM, Reiner DS, Gillin FD (2003) Mining the Giardia lamblia genome for new cyst wall proteins. The Journal of biological chemistry 278: 21701–21708. doi: 10.1074/jbc.m302023200
|
[24] | Gerwig GJ, van Kuik JA, Leeflang BR, Kamerling JP, Vliegenthart JF, et al. (2002) The Giardia intestinalis filamentous cyst wall contains a novel beta(1–3)-N-acetyl-D-galactosamine polymer: a structural and conformational study. Glycobiology 12: 499–505. doi: 10.1093/glycob/cwf059
|
[25] | Jarroll EL, Manning P, Lindmark DG, Coggins JR, Erlandsen SL (1989) Giardia cyst wall-specific carbohydrate: evidence for the presence of galactosamine. Mol Biochem Parasitol 32: 121–131. doi: 10.1016/0166-6851(89)90063-7
|
[26] | Stefanic S, Morf L, Kulangara C, Regos A, Sonda S, et al. (2009) Neogenesis and maturation of transient Golgi-like cisternae in a simple eukaryote. J Cell Sci 122: 2846–2856. doi: 10.1242/jcs.049411
|
[27] | Faso C, Konrad C, Schraner EM, Hehl AB (2012) Export of cyst wall material and Golgi organelle neogenesis in Giardia lamblia depend on endoplasmic reticulum exit sites. Cellular microbiology.
|
[28] | Konrad C, Spycher C, Hehl AB (2010) Selective condensation drives partitioning and sequential secretion of cyst wall proteins in differentiating Giardia lamblia. PLoS Pathog 6: e1000835. doi: 10.1371/journal.ppat.1000835
|
[29] | Marti M, Regos A, Li Y, Schraner EM, Wild P, et al. (2003) An ancestral secretory apparatus in the protozoan parasite Giardia intestinalis. The Journal of biological chemistry 278: 24837–24848. doi: 10.1074/jbc.m302082200
|
[30] | Morrison HG, McArthur AG, Gillin FD, Aley SB, Adam RD, et al. (2007) Genomic minimalism in the early diverging intestinal parasite Giardia lamblia. Science (New York, NY 317: 1921–1926. doi: 10.1126/science.1143837
|
[31] | Dacks JB, Walker G, Field MC (2008) Implications of the new eukaryotic systematics for parasitologists. Parasitol Int 57: 97–104. doi: 10.1016/j.parint.2007.11.004
|
[32] | Stefanic S, Palm D, Svard SG, Hehl AB (2006) Organelle proteomics reveals cargo maturation mechanisms associated with Golgi-like encystation vesicles in the early-diverged protozoan Giardia lamblia. The Journal of biological chemistry 281: 7595–7604. doi: 10.1074/jbc.m510940200
|
[33] | Jedelsky PL, Dolezal P, Rada P, Pyrih J, Smid O, et al. (2011) The minimal proteome in the reduced mitochondrion of the parasitic protist Giardia intestinalis. PLoS One 6: e17285. doi: 10.1371/journal.pone.0017285
|
[34] | Huang da W, Sherman BT, Lempicki RA (2009) Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc 4: 44–57. doi: 10.1038/nprot.2008.211
|
[35] | Davids BJ, Reiner DS, Birkeland SR, Preheim SP, Cipriano MJ, et al. (2006) A new family of giardial cysteine-rich non-VSP protein genes and a novel cyst protein. PLoS One 1: e44. doi: 10.1371/journal.pone.0000044
|
[36] | Chiu PW, Huang YC, Pan YJ, Wang CH, Sun CH (2010) A novel family of cyst proteins with epidermal growth factor repeats in Giardia lamblia. PLoS neglected tropical diseases 4: e677. doi: 10.1371/journal.pntd.0000677
|
[37] | DuBois KN, Abodeely M, Sakanari J, Craik CS, Lee M, et al. (2008) Identification of the major cysteine protease of Giardia and its role in encystation. The Journal of biological chemistry 283: 18024–18031. doi: 10.1074/jbc.m802133200
|
[38] | Castillo-Romero A, Leon-Avila G, Wang CC, Perez Rangel A, Camacho Nuez M, et al. (2010) Rab11 and actin cytoskeleton participate in Giardia lamblia encystation, guiding the specific vesicles to the cyst wall. PLoS neglected tropical diseases 4: e697. doi: 10.1371/journal.pntd.0000697
|
[39] | Davids BJ, Gilbert MA, Liu Q, Reiner DS, Smith AJ, et al. (2011) An atypical proprotein convertase in Giardia lamblia differentiation. Mol Biochem Parasitol 175: 169–180. doi: 10.1016/j.molbiopara.2010.11.008
|
[40] | Davids BJ, Mehta K, Fesus L, McCaffery JM, Gillin FD (2004) Dependence of Giardia lamblia encystation on novel transglutaminase activity. Mol Biochem Parasitol 136: 173–180. doi: 10.1016/j.molbiopara.2004.03.011
|
[41] | Hehl AB, Marti M, Kohler P (2000) Stage-specific expression and targeting of cyst wall protein-green fluorescent protein chimeras in Giardia. Mol Biol Cell 11: 1789–1800. doi: 10.1091/mbc.11.5.1789
|
[42] | Hehl AB, Marti M (2004) Secretory protein trafficking in Giardia intestinalis. Mol Microbiol 53: 19–28. doi: 10.1111/j.1365-2958.2004.04115.x
|
[43] | Elias EV, Quiroga R, Gottig N, Nakanishi H, Nash TE, et al. (2008) Characterization of SNAREs determines the absence of a typical Golgi apparatus in the ancient eukaryote Giardia lamblia. The Journal of biological chemistry 283: 35996–36010. doi: 10.1074/jbc.m806545200
|
[44] | McCaffery JM, Faubert GM, Gillin FD (1994) Giardia lamblia: traffic of a trophozoite variant surface protein and a major cyst wall epitope during growth, encystation, and antigenic switching. Exp Parasitol 79: 236–249. doi: 10.1006/expr.1994.1087
|
[45] | Svard SG, Meng TC, Hetsko ML, McCaffery JM, Gillin FD (1998) Differentiation-associated surface antigen variation in the ancient eukaryote Giardia lamblia. Mol Microbiol 30: 979–989. doi: 10.1046/j.1365-2958.1998.01125.x
|
[46] | Hong W, Lev S (2013) Tethering the assembly of SNARE complexes. Trends Cell Biol.
|
[47] | Leung KF, Dacks JB, Field MC (2008) Evolution of the multivesicular body ESCRT machinery; retention across the eukaryotic lineage. Traffic 9: 1698–1716. doi: 10.1111/j.1600-0854.2008.00797.x
|
[48] | Morf L, Spycher C, Rehrauer H, Fournier CA, Morrison HG, et al. (2010) The transcriptional response to encystation stimuli in Giardia lamblia is restricted to a small set of genes. Eukaryot Cell 9: 1566–1576. doi: 10.1128/ec.00100-10
|
[49] | Birkeland SR, Preheim SP, Davids BJ, Cipriano MJ, Palm D, et al. (2010) Transcriptome analyses of the Giardia lamblia life cycle. Mol Biochem Parasitol 174: 62–65. doi: 10.1016/j.molbiopara.2010.05.010
|
[50] | McArthur AG, Morrison HG, Nixon JE, Passamaneck NQ, Kim U, et al. (2000) The Giardia genome project database. FEMS Microbiol Lett 189: 271–273. doi: 10.1111/j.1574-6968.2000.tb09242.x
|
[51] | Banerjee S, Cui J, Robbins PW, Samuelson J (2008) Use of Giardia, which appears to have a single nucleotide-sugar transporter for UDP-GlcNAc, to identify the UDP-Glc transporter of Entamoeba. Mol Biochem Parasitol 159: 44–53. doi: 10.1016/j.molbiopara.2008.01.004
|
[52] | Oppermann U, Filling C, Hult M, Shafqat N, Wu X, et al. (2003) Short-chain dehydrogenases/reductases (SDR): the 2002 update. Chemico-biological interactions 143–144: 247–253. doi: 10.1016/s0009-2797(02)00164-3
|
[53] | Macechko PT, Steimle PA, Lindmark DG, Erlandsen SL, Jarroll EL (1992) Galactosamine-synthesizing enzymes are induced when Giardia encyst. Mol Biochem Parasitol 56: 301–309. doi: 10.1016/0166-6851(92)90179-n
|
[54] | Lanfredi-Rangel A, Attias M, Reiner DS, Gillin FD, De Souza W (2003) Fine structure of the biogenesis of Giardia lamblia encystation secretory vesicles. J Struct Biol 143: 153–163. doi: 10.1016/s1047-8477(03)00123-0
|
[55] | Faso C, Hehl AB (2011) Membrane trafficking and organelle biogenesis in Giardia lamblia: use it or lose it. Int J Parasitol 41: 471–480. doi: 10.1016/j.ijpara.2010.12.014
|
[56] | Faso C, Bischof S, Hehl AB (2013) The proteome landscape of Giardia lamblia encystation. PLoS One in press.
|
[57] | Vazquez-Martinez R, Diaz-Ruiz A, Almabouada F, Rabanal-Ruiz Y, Gracia-Navarro F, et al. (2012) Revisiting the regulated secretory pathway: from frogs to human. Gen Comp Endocrinol 175: 1–9. doi: 10.1016/j.ygcen.2011.08.017
|
[58] | Turkewitz AP (2004) Out with a bang! Tetrahymena as a model system to study secretory granule biogenesis. Traffic 5: 63–68. doi: 10.1046/j.1600-0854.2003.00155.x
|
[59] | Reiner DS, McCaffery M, Gillin FD (1990) Sorting of cyst wall proteins to a regulated secretory pathway during differentiation of the primitive eukaryote, Giardia lamblia. Eur J Cell Biol 53: 142–153.
|
[60] | Chatterjee A, Carpentieri A, Ratner DM, Bullitt E, Costello CE, et al. (2010) Giardia cyst wall protein 1 is a lectin that binds to curled fibrils of the GalNAc homopolymer. PLoS Pathog 6: e1001059. doi: 10.1371/journal.ppat.1001059
|
[61] | Abdul-Wahid A, Faubert GM (2004) Similarity in cyst wall protein (CWP) trafficking between encysting Giardia duodenalis trophozoites and CWP-expressing human embryonic kidney-293 cells. Biochemical and biophysical research communications 324: 1069–1080. doi: 10.1016/j.bbrc.2004.09.167
|
[62] | Beuret N, Stettler H, Renold A, Rutishauser J, Spiess M (2004) Expression of regulated secretory proteins is sufficient to generate granule-like structures in constitutively secreting cells. The Journal of biological chemistry 279: 20242–20249. doi: 10.1074/jbc.m310613200
|
[63] | Kim T, Tao-Cheng JH, Eiden LE, Loh YP (2001) Chromogranin A, an “on/off” switch controlling dense-core secretory granule biogenesis. Cell 106: 499–509. doi: 10.1016/s0092-8674(01)00459-7
|
[64] | Voorberg J, Fontijn R, Calafat J, Janssen H, van Mourik JA, et al. (1993) Biogenesis of von Willebrand factor-containing organelles in heterologous transfected CV-1 cells. EMBO J 12: 749–758.
|
[65] | Scott DC, Schekman R (2008) Role of Sec61p in the ER-associated degradation of short-lived transmembrane proteins. J Cell Biol 181: 1095–1105. doi: 10.1083/jcb.200804053
|
[66] | Lopez AB, Sener K, Trosien J, Jarroll EL, van Keulen H (2007) UDP-N-acetylglucosamine 4′-epimerase from the intestinal protozoan Giardia intestinalis lacks UDP-glucose 4′-epimerase activity. The Journal of eukaryotic microbiology 54: 154–160. doi: 10.1111/j.1550-7408.2007.00246.x
|
[67] | Samuelson J, Banerjee S, Magnelli P, Cui J, Kelleher DJ, et al. (2005) The diversity of dolichol-linked precursors to Asn-linked glycans likely results from secondary loss of sets of glycosyltransferases. Proc Natl Acad Sci U S A 102: 1548–1553. doi: 10.1073/pnas.0409460102
|
[68] | Cao Z, Li C, Higginbotham JN, Franklin JL, Tabb DL, et al. (2008) Use of fluorescence-activated vesicle sorting for isolation of Naked2-associated, basolaterally targeted exocytic vesicles for proteomics analysis. Mol Cell Proteomics 7: 1651–1667. doi: 10.1074/mcp.m700155-mcp200
|
[69] | Gauthier DJ, Sobota JA, Ferraro F, Mains RE, Lazure C (2008) Flow cytometry-assisted purification and proteomic analysis of the corticotropes dense-core secretory granules. Proteomics 8: 3848–3861. doi: 10.1002/pmic.200700969
|
[70] | Brunner Y, Schvartz D, Coute Y, Sanchez JC (2009) Proteomics of regulated secretory organelles. Mass spectrometry reviews 28: 844–867. doi: 10.1002/mas.20211
|
[71] | Lee YH, Tan HT, Chung MC (2010) Subcellular fractionation methods and strategies for proteomics. Proteomics 10: 3935–3956. doi: 10.1002/pmic.201000289
|
[72] | Jerlstrom-Hultqvist J, Einarsson E, Xu F, Hjort K, Ek B, et al. (2013) Hydrogenosomes in the diplomonad Spironucleus salmonicida. Nat Commun 4: 2493. doi: 10.1038/ncomms3493
|
[73] | Aguilar RM, Bustamante JJ, Hernandez PG, Martinez AO, Haro LS (1999) Precipitation of dilute chromatographic samples (ng/ml) containing interfering substances for SDS-PAGE. Analytical biochemistry 267: 344–350. doi: 10.1006/abio.1998.3018
|
[74] | Vizcaino JA, Cote RG, Csordas A, Dianes JA, Fabregat A, et al. (2013) The PRoteomics IDEntifications (PRIDE) database and associated tools: status in 2013. Nucleic Acids Res 41: D1063–1069. doi: 10.1093/nar/gks1262
|
[75] | Jimenez-Garcia LF, Zavala G, Chavez-Munguia B, Ramos-Godinez Mdel P, Lopez-Velazquez G, et al. (2008) Identification of nucleoli in the early branching protist Giardia duodenalis. Int J Parasitol 38: 1297–1304.
|