全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS ONE  2014 

Low-Dose Prospectively Electrocardiogram-Gated Axial Dual-Source CT Angiography in Patients with Pulsatile Bilateral Bidirectional Glenn Shunt: An Alternative Noninvasive Method for Postoperative Morphological Estimation

DOI: 10.1371/journal.pone.0094425

Full-Text   Cite this paper   Add to My Lib

Abstract:

Objective To explore the clinical value of low-dose prospectively electrocardiogram-gated axial dual-source CT angiography (low-dose PGA scanning, CTA) in patients with pulsatile bilateral bidirectional Glenn shunt (bBDG) as an alternative noninvasive method for postoperative morphological estimation. Methods Twenty patients with pulsatile bBDG (mean age 4.2±1.6 years) underwent both low-dose PGA scanning and conventional cardiac angiography (CCA) for the morphological changes. The morphological evaluation included the anatomy of superior vena cava (SVC) and pulmonary artery (PA), the anastomotic location, thrombosis, aorto-pulmonary collateral circulation, pulmonary arteriovenous malformations, etc. Objective and subjective image quality was assessed. Bland–Altman analysis and linear regression analyses were used to evaluate the correlation on measurements between CTA and CCA. Effective radiation dose of both modalities was calculated. Results The CT attenuation value of bilateral SVC and PA was higher than 300 HU. The average subjective image quality score was 4.05±0.69. The morphology of bilateral SVC and PA was displayed completely and intuitively by CTA images. There were 24 SVC above PA and 15 SVC beside PA. Thrombosis was found in 1 patient. Collateral vessels were detected in 13 patients. No pulmonary arteriovenous malformation was found in our study. A strong correlation (R2>0.8, P<0.001) was observed between the measurements on CTA images and on CCA images. Bland–Altman analysis demonstrated a systematic overestimation of the measurements by CTA (the mean value of bias>0).The mean effective dose of CTA and CCA was 0.50±0.17 mSv and 4.85±1.34 mSv respectively. Conclusion CT angiography with a low-dose PGA scanning is an accurate and reliable noninvasive examination in the assessment of morphological changes in patients with pulsatile bBDG.

References

[1]  Iyer GKT, Van Arsdell GS, Dicke FP, McCrindle BW, Coles JG, et al. (2000) Are bilateral superior vena cavae a risk factor for single ventricle palliation? Ann Thorac Surg 70: 711–716. doi: 10.1016/s0003-4975(00)01627-1
[2]  Vida VL, Leon-Wyss J, Garcia F, Castaneda AR (2006) A Gore-Tex ‘newinnominate’ vein: a surgical option for complicated bilateral cavopulmonary shunts. Eur J Cardiothorac Surg 29: 112–113. doi: 10.1016/j.ejcts.2005.10.019
[3]  Gray RG, Altmann K, Mosca RS, Prakash A, Williams IA, et al. (2007) Persistent antegrade pulmonary blood flow post-glenn does not alter early post-Fontan outcomes in single-ventricle patients. Ann Thorac Surg 84: 888–893. doi: 10.1016/j.athoracsur.2007.04.105
[4]  Demirtürk OS, Güvener M, Co?kun I, Y?ld?r?m SV (2013) Results of additional pulsatile pulmonary blood flow with bidirectional glenn cavopulmonary anastomosis: positive effect on main pulmonary artery growth and less need for fontan conversion. Heart Surg Forum 16: e30–e34. doi: 10.1532/hsf98.20121078
[5]  Ferns SJ, El Zein C, Multani K, Sajan I, Subramanian S, et al. (2013) Is additional pulsatile pulmonary blood flow beneficial to patients with bidirectional Glenn? J Thorac Cardiovasc Surg 145: 451–454. doi: 10.1016/j.jtcvs.2012.11.027
[6]  Lee YW, Yang CC, Mok GS, Wu TH (2012) Infant cardiac CT angiography with 64-slice and 256-slice CT: comparison of radiation dose and image quality using a pediatric phantom. PLoS One 7: e49609 doi:10.1371/journal.pone.0049609.
[7]  Bhalla S, Javidan-Nejad C, Bierhals AJ, Woodard PK, Gutierrez FR (2008) CT in the evaluation of congenital heart disease in children, adolescents, and young adults. Curr Treat Options Cardiovasc Med 10: 425–432. doi: 10.1007/s11936-008-0034-9
[8]  Cook SC, Raman SV (2008) Multidetector computed tomography in the adolescent and young adult with congenital heart disease. J Cardiovasc Comput Tomogr 2: 36–49. doi: 10.1016/j.jcct.2007.12.004
[9]  Feltes TF, Bacha E, Beekman RH 3rd, Cheatham JP, Feinstein JA, et al. (2011) Indications for Cardiac Catheterization and Intervention in Pediatric Cardiac Disease. Circulation 123: 2607–2652. doi: 10.1161/cir.0b013e31821b1f10
[10]  David W Brown, Andrew J Powell, Tal Geva (2010) Imaging complex congenital heart disease — functional single ventricle, the Glenn circulation and the Fontan circulation: A multimodality approach. Progress in Pediatric Cardiology 28: 45–58. doi: 10.1016/j.ppedcard.2009.10.003
[11]  Schulte-Uentrop L, Goepfert MS (2010) Anaesthesia or sedation for MRI in children. Curr Opin Anaesthesiol 23: 513–517. doi: 10.1097/aco.0b013e32833bb524
[12]  Sreevastava DK, Setlur R (2008) Anaesthesia for Paediatric Cardiac MRI. MJAFI 64: 204–207. doi: 10.1016/s0377-1237(08)80092-5
[13]  Chan FP (2009) MR and CT imaging of the pediatric patient with structural heart disease. Semin Thorac Cardiovasc Surg Pediatr Card Surg Annu: 99–105. doi: 10.1053/j.pcsu.2009.01.009.
[14]  Hayabuchi Y, Inoue M, Watanabe N, Sakata M, Nabo MM, et al. (2010) Assessment of systemic-pulmonary collateral arteries in children with cyanotic congenital heart disease using multidetector-row computed tomography: comparison with conventional angiography. Int J Cardiol 138: 266–271. doi: 10.1016/j.ijcard.2008.08.018
[15]  Spevak PJ, Johnson PT, Fishman EK (2008) Surgically corrected congenital heart disease: Utility of 64-MDCT. AJR Am J Roentgenol 191: 854–861. doi: 10.2214/ajr.07.2889
[16]  Leschka S, Oechslin E, Husmann L, Desbiolles L, Marincek B, et al. (2007) Pre- and postoperative evaluation of congenital heart disease in children and adults with 64-section CT. Radiographics 27: 829–846. doi: 10.1148/rg.273065713
[17]  Gaca AM, Jaggers JJ, Dudley LT, Bisset GS 3rd (2008) Repair of congenital heart disease: A primer—Part 1. Radiology 247: 617–631. doi: 10.1148/radiol.2473061909
[18]  Gaca AM, Jaggers JJ, Dudley LT, Bisset GS 3rd (2008) Repair of congenital heart disease: A primer—Part 2. Radiology 248: 44–60. doi: 10.1148/radiol.2481070166
[19]  Cheng ZP, Wang XM, Duan YH, Wu LB, Wu DW, et al. (2010) Low-dose prospective ECG-triggering dual-source CT angiography in infants and children with complex congenital heart disease: first experience. Eur Radiol 20: 2503–2511. doi: 10.1007/s00330-010-1822-7
[20]  Pache G, Grohmann J, Bulla S, Arnold R, Stiller B, et al.. (2011) Prospective electrocardiography-triggered CT angiography of the great thoracic vessels in infants and toddlers with congenital heart disease: Feasibility and image quality. Eur J Radiol 80: e440– e445.
[21]  Paul JF, Rohnean A, Elfassy E, Sigal-Cinqualbre A (2011) Radiation dose for thoracic and coronary step-and-shoot CT using a 128-slice dual-source machine in infants and small children with congenital heart disease. Pediatr Radiol 41: 244–249. doi: 10.1007/s00247-010-1804-6
[22]  Tann OR, Muthurangu V, Young C, Owens CM (2010) Cardiovascular CT imaging in congenital heart disease. Progress in Pediatric Cardiology 28: 21–27. doi: 10.1016/j.ppedcard.2009.10.007
[23]  Manlhiot C, Brand?o LR, Kwok J, Kegel S, Menjak IB, et al. (2012) Thrombotic complications and thromboprophylaxis across all three stages of single ventricle heart palliation. J Pediatr 161: 513–519. doi: 10.1016/j.jpeds.2012.03.004
[24]  Procelewska M, Kolcz J, Januszewska K, Mroczek T, Malec E (2007) Coagulation abnormalities and liver function after hemi-Fontan and Fontan procedures - the importance of hemodynamics in the early postoperative period. Eur J Cardiothorac Surg 31: 866–872. doi: 10.1016/j.ejcts.2007.01.033
[25]  Triedman JK, Bridges ND, Mayer JE Jr, Lock JE (1993) Prevalence and risk factors for aortopulmonary collateral vessels after Fontan and bidirectional Glenn procedures. J Am Coll Cardiol 22: 207–215. doi: 10.1016/0735-1097(93)90836-p
[26]  Krishnan US, Lamour JM, Hsu DT, Kichuk MR, Donnelly CM, et al. (2004) Management of aortopulmonary collaterals in children following cardiac transplantation for complex congenital heart disease. J Heart Lung Transplant 23: 564–569. doi: 10.1016/s1053-2498(03)00305-x
[27]  Srivastava D, Preminger T, Lock JE, Mandell V, Keane JF, et al. (1995) Hepatic venous blood and the development of pulmonary arteriovenous malformations in congenital heart disease. Circulation 92: 1217–1222. doi: 10.1161/01.cir.92.5.1217
[28]  Thomas KE, Wang B (2008) Age-specific effective doses for pediatric MSCT examinations at a large children's hospital using DLP conversion coefficients: a simple estimation method. Pediatr Radiol 38: 645–656. doi: 10.1007/s00247-008-0794-0
[29]  Rassow J, Schmaltz AA, Hentrich F, Streffer C (2000) Effective doses to patients from paediatric cardiac catheterization. Br J Radiol 73: 172–183.
[30]  Kretschmar O, Sglimbea A, Prêtre R, Knirsch W (2009) Pulmonary artery stent implantation in children with single ventricle malformation before and after completion of partial and total cavopulmonary connections. J Interv Cardiol 22: 285–290. doi: 10.1111/j.1540-8183.2009.00460.x
[31]  Tsai IC, Chen MC, Jan SL, Wang CC, Fu YC, et al. (2008) Neonatal cardiac multidetector row CT: why and how we do it. Pediatr Radiol 38: 438–451. doi: 10.1007/s00247-008-0761-9
[32]  Shiraishi I, Kajiyama Y, Yamagishi M, Hamaoka K, Yagihara T (2012) The applications of non-ECG-gated MSCT angiography in children with congenital heart disease. Int J Cardiol. 156: 309–314. doi: 10.1016/j.ijcard.2010.11.009
[33]  Wang XM, Wu LB, Sun C, Liu C, Chao BT, et al. (2007) Clinical application of 64-slice spiral CT in the diagnosis of the tetralogy of Fallot. Eur J Radiol 64: 296–301. doi: 10.1016/j.ejrad.2007.02.026
[34]  Ben Saad M, Rohnean A, Sigal-Cinqualbre A, Adler G, Paul JF (2009) Evaluation of image quality and radiation dose of thoracic and coronary dual-source CT in 110 infants with congenital heart disease. Pediatr Radiol 39: 668–676. doi: 10.1007/s00247-009-1209-6
[35]  Khatri S, Varma SK, Khatri P, Kumar RS (2008) Sixty-four-slice multidetector-row computed tomographic angiography for evaluating congenital heart disease. Pediatr Cardiol 29: 755–762. doi: 10.1007/s00246-008-9196-1
[36]  Han BK, Lindberg J, Grant K, Schwartz RS, Lesser JR (2011) Accuracy and safety of high pitch computed tomography imaging in young children with complex congenital heart disease. Am J Cardiol 107: 1541–1546. doi: 10.1016/j.amjcard.2011.01.065
[37]  Benavidez O, Prakash A, Gauvreau K, Powell AJ, Geva T (2009) Diagnostic quality of steady state free precession imaging of cardiac valve morphology in pediatric/congenital heart disease. J Cardiovasc Magn Reson 11(Suppl 1): 115. Ref Type: Abstract.
[38]  Prakash A, Torres AJ, Printz BF, Prince MR, Nielsen JC (2007) Usefulness of magnetic resonance angiography in the evaluation of complex congenital heart disease in newborns and infants. Am J Cardiol 100: 715–721. doi: 10.1016/j.amjcard.2007.03.090
[39]  Browne LP, Krishnamurthy R, Chung T (2011) Preoperative and postoperative MR evaluation of congenital heart disease in children. Radiol Clin North Am 9: 1011–1024. doi: 10.1016/j.rcl.2011.06.010
[40]  Grosse-Wortmann L, Al-Otay A, Yoo SJ (2009) Aortopulmonary collaterals after bidirectional cavopulmonary connection or Fontan completion: quantification with MRI. Circ Cardiovasc Imaging 2: 219–225. doi: 10.1161/circimaging.108.834192
[41]  Wang RP, Liang CH, Huang MP, Liu H, Deng QP, et al. (2012) Assessment of aortopulmonary collateral flow and pulmonary vascular growth using a 3.0 T magnetic resonance imaging system in patients who underwent bidirectional Glenn shunting. Eur J Cardiothorac Surg 41: e146–e153. doi: 10.1093/ejcts/ezs189

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133