全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS ONE  2014 

L-arginine Supplementation Protects Exercise Performance and Structural Integrity of Muscle Fibers after a Single Bout of Eccentric Exercise in Rats

DOI: 10.1371/journal.pone.0094448

Full-Text   Cite this paper   Add to My Lib

Abstract:

Eccentric exercise is known to disrupt sarcolemmal integrity and induce damage of skeletal muscle fibers. We hypothesized that L-arginine (L-Arg; nitric oxide synthase (NOS) substrate) supplementation prior to a single bout of eccentric exercise would diminish exercise-induced damage. In addition, we used N-nitro-L-arginine methyl ester hydrochloride (L-NAME; NOS inhibitor) to clarify the role of native NOS activity in the development of exercise-induced muscle damage. Rats were divided into four groups: non-treated control (C), downhill running with (RA) or without (R) L-Arg supplementation and downhill running with L-NAME supplementation (RN). Twenty four hours following eccentric exercise seven rats in each group were sacrificed and soleus muscles were dissected and frozen for further analysis. The remaining seven rats in each group were subjected to the exercise performance test. Our experiments showed that L-Arg supplementation prior to a single bout of eccentric exercise improved subsequent exercise performance capacity tests in RA rats when compared with R, RN and C rats by 37%, 27% and 13%, respectively. This outcome is mediated by L-Arg protection against post-exercise damage of sarcolemma (2.26- and 0.87-fold less than R and RN groups, respectively), reduced numbers of damaged muscle fibers indicated by the reduced loss of desmin content in the muscle (15% and 25% less than R and RN groups, respectively), and diminished μ-calpain mRNA up-regulation (42% and 30% less than R and RN groups, respectively). In conclusion, our study indicates that L-Arg supplementation prior to a single bout of eccentric exercise alleviates muscle fiber damage and preserves exercise performance capacity.

References

[1]  Armstrong RB, Warren GL, Warren JA (1991) Mechanisms of exercise-induced muscle fibre injury. Sports Med 12: 184–207. doi: 10.2165/00007256-199112030-00004
[2]  Knoblauch MA, O’Connor DP, Clarke MS (2013) Obese mice incur greater myofiber membrane disruption in response to mechanical load compared with lean mice. Obesity (Silver Spring) 21: 135–143. doi: 10.1002/oby.20253
[3]  Biral D, Jakubiec-Puka A, Ciechomska I, Sandri M, Rossini K, et al. (2000) Loss of dystrophin and some dystrophin-associated proteins with concomitant signs of apoptosis in rat leg muscle overworked in extension. Acta Neuropathol 100: 618–626. doi: 10.1007/s004010000231
[4]  Brussee V, Tardif F, Tremblay JP (1997) Muscle fibers of mdx mice are more vulnerable to exercise than those of normal mice. Neuromuscul Disord 7: 487–492. doi: 10.1016/s0960-8966(97)00115-6
[5]  Carter GT, Kikuchi N, Horasek SJ, Walsh SA (1994) The use of fluorescent dextrans as a marker of sarcolemmal injury. Histol Histopathol 9: 443–447.
[6]  Friden J, Lieber RL (2001) Eccentric exercise-induced injuries to contractile and cytoskeletal muscle fibre components. Acta Physiol Scand 171: 321–326. doi: 10.1046/j.1365-201x.2001.00834.x
[7]  Zhang BT, Whitehead NP, Gervasio OL, Reardon TF, Vale M, et al. (2012) Pathways of Ca(2)(+) entry and cytoskeletal damage following eccentric contractions in mouse skeletal muscle. J Appl Physiol (1985) 112: 2077–2086. doi: 10.1152/japplphysiol.00770.2011
[8]  Lieber RL, Thornell LE, Friden J (1996) Muscle cytoskeletal disruption occurs within the first 15 min of cyclic eccentric contraction. J Appl Physiol (1985) 80: 278–284. doi: 10.1249/00005768-199405001-00147
[9]  Friden J, Lieber RL (1998) Segmental muscle fiber lesions after repetitive eccentric contractions. Cell Tissue Res 293: 165–171. doi: 10.1007/s004410051108
[10]  Gauche E, Couturier A, Lepers R, Michaut A, Rabita G, et al. (2009) Neuromuscular fatigue following high versus low-intensity eccentric exercise of biceps brachii muscle. J Electromyogr Kinesiol 19: e481–486. doi: 10.1016/j.jelekin.2009.01.006
[11]  Murphy RM, Dutka TL, Horvath D, Bell JR, Delbridge LM, et al. (2013) Ca2+-dependent proteolysis of junctophilin-1 and junctophilin-2 in skeletal and cardiac muscle. J Physiol 591: 719–729. doi: 10.1113/jphysiol.2012.243279
[12]  Lynch GS, Fary CJ, Williams DA (1997) Quantitative measurement of resting skeletal muscle [Ca2+]i following acute and long-term downhill running exercise in mice. Cell Calcium 22: 373–383. doi: 10.1016/s0143-4160(97)90022-1
[13]  Murphy RM, Verburg E, Lamb GD (2006) Ca2+ activation of diffusible and bound pools of mu-calpain in rat skeletal muscle. J Physiol 576: 595–612. doi: 10.1113/jphysiol.2006.114090
[14]  Branca D, Gugliucci A, Bano D, Brini M, Carafoli E (1999) Expression, partial purification and functional properties of themuscle-specific calpain isoform p94. Eur J Biochem 265: 839–846. doi: 10.1046/j.1432-1327.1999.00817.x
[15]  Murphy RM, Lamb GD (2009) Endogenous calpain-3 activation is primarily governed by small increases in resting cytoplasmic [Ca2+] and is not dependent on stretch. J Biol Chem 284: 7811–7819. doi: 10.1074/jbc.m808655200
[16]  Spencer MJ, Mellgren RL (2002) Overexpression of a calpastatin transgene in mdx muscle reduces dystrophic pathology. Hum Mol Genet 11: 2645–2655. doi: 10.1093/hmg/11.21.2645
[17]  Carlin KR, Huff-Lonergan E, Rowe LJ, Lonergan SM (2006) Effect of oxidation, pH, and ionic strength on calpastatin inhibition of mu- and m-calpain. J Anim Sci 84: 925–937.
[18]  Barton ER, Morris L, Kawana M, Bish LT, Toursel T (2005) Systemic administration of L-arginine benefits mdx skeletal muscle function. Muscle Nerve 32: 751–760. doi: 10.1002/mus.20425
[19]  Voisin V, Sebrie C, Matecki S, Yu H, Gillet B, et al. (2005) L-arginine improves dystrophic phenotype in mdx mice. Neurobiol Dis 20: 123–130. doi: 10.1016/j.nbd.2005.02.010
[20]  Michetti M, Salamino F, Melloni E, Pontremoli S (1995) Reversible inactivation of calpain isoforms by nitric oxide. Biochem Biophys Res Commun 207: 1009–1014. doi: 10.1006/bbrc.1995.1285
[21]  Koh TJ, Tidball JG (2000) Nitric oxide inhibits calpain-mediated proteolysis of talin in skeletal muscle cells. Am J Physiol Cell Physiol 279: C806–812.
[22]  Zhang JS, Kraus WE, Truskey GA (2004) Stretch-induced nitric oxide modulates mechanical properties of skeletal muscle cells. Am J Physiol Cell Physiol 287: C292–299. doi: 10.1152/ajpcell.00018.2004
[23]  Archer JD, Vargas CC, Anderson JE (2006) Persistent and improved functional gain in mdx dystrophic mice after treatment with L-arginine and deflazacort. FASEB J 20: 738–740. doi: 10.1096/fj.05-4821fje
[24]  Hnia K, Gayraud J, Hugon G, Ramonatxo M, De La Porte S, et al. (2008) L-arginine decreases inflammation and modulates the nuclear factor-kappaB/matrix metalloproteinase cascade in mdx muscle fibers. Am J Pathol 172: 1509–1519. doi: 10.2353/ajpath.2008.071009
[25]  Sosnowski P, Krauss H, Bogdanski P, Suliburska J, Jablecka A, et al. (2012) The influence of short-term L-arginine supplementation on rats’ muscular and hepatic cells in ischemia-reperfusion syndrome. J Physiol Biochem 68: 1–9. doi: 10.1007/s13105-011-0111-5
[26]  Huang CC, Lin TJ, Lu YF, Chen CC, Huang CY, et al. (2009) Protective effects of L-arginine supplementation against exhaustive exercise-induced oxidative stress in young rat tissues. Chin J Physiol 52: 306–315. doi: 10.4077/cjp.2009.amh068
[27]  Huang CC, Tsai SC, Lin WT (2008) Potential ergogenic effects of L-arginine against oxidative and inflammatory stress induced by acute exercise in aging rats. Exp Gerontol 43: 571–577. doi: 10.1016/j.exger.2008.03.002
[28]  Xiao DS, Jiang L, Che LL, Lu L (2003) Nitric oxide and iron metabolism in exercised rat with L-arginine supplementation. Mol Cell Biochem 252: 65–72.
[29]  Lass A, Suessenbacher A, Wolkart G, Mayer B, Brunner F (2002) Functional and analytical evidence for scavenging of oxygen radicals by L-arginine. Mol Pharmacol 61: 1081–1088. doi: 10.1124/mol.61.5.1081
[30]  Lanteri R, Acquaviva R, Di Giacomo C, Caltabiano R, Li Destri G, et al. (2006) Heme oxygenase 1 expression in postischemic reperfusion liver damage: effect of L-arginine. Microsurgery 26: 25–32. doi: 10.1002/micr.20206
[31]  Sakurai T, Kashimura O, Kano Y, Ohno H, Ji LL, et al. (2013) Role of nitric oxide in muscle regeneration following eccentric muscle contractions in rat skeletal muscle. J Physiol Sci 63: 263–270. doi: 10.1007/s12576-013-0262-y
[32]  Lynn R, Morgan DL (1994) Decline running produces more sarcomeres in rat vastus intermedius muscle fibers than does incline running. J Appl Physiol (1985) 77: 1439–1444.
[33]  Smith HK, Plyley MJ, Rodgers CD, McKee NH (1997) Skeletal muscle damage in the rat hindlimb following single or repeated daily bouts of downhill exercise. Int J Sports Med 18: 94–100. doi: 10.1055/s-2007-972602
[34]  Hayward R, Ferrington DA, Kochanowski LA, Miller LM, Jaworsky GM, et al. (1999) Effects of dietary protein on enzyme activity following exercise-induced muscle injury. Med Sci Sports Exerc 31: 414–420. doi: 10.1097/00005768-199903000-00010
[35]  Kyparos A, Matziari C, Albani M, Arsos G, Sotiriadou S, et al. (2001) A decrease in soleus muscle force generation in rats after downhill running. Can J Appl Physiol 26: 323–335. doi: 10.1139/h01-020
[36]  Takekura H, Fujinami N, Nishizawa T, Ogasawara H, Kasuga N (2001) Eccentric exercise-induced morphological changes in the membrane systems involved in excitation-contraction coupling in rat skeletal muscle. J Physiol 533: 571–583. doi: 10.1111/j.1469-7793.2001.0571a.x
[37]  Benedini-Elias PC, Morgan MC, Cornachione AS, Martinez EZ, Mattiello-Sverzut AC (2013) Post-immobilization eccentric training promotes greater hypertrophic and angiogenic responses than passive stretching in muscles of weanling rats. Acta Histochem.
[38]  Obolenskaya M, Vanin AF, Mordvintcev PI, Mulsch A, Decker K (1994) Epr evidence of nitric oxide production by the regenerating rat liver. Biochem Biophys Res Commun 202: 571–576. doi: 10.1006/bbrc.1994.1966
[39]  Vanin AF, Huisman A, van Faassen EE (2002) Iron dithiocarbamate as spin trap for nitric oxide detection: pitfalls and successes. Methods Enzymol 359: 27–42. doi: 10.1016/s0076-6879(02)59169-2
[40]  Lomonosova YN, Shenkman BS, Nemirovskaya TL (2012) Attenuation of unloading-induced rat soleus atrophy with the heat-shock protein inducer 17-(allylamino)-17-demethoxygeldanamycin. FASEB J 26: 4295–4301. doi: 10.1096/fj.12-204412
[41]  Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 25: 402–408. doi: 10.1006/meth.2001.1262
[42]  Schoenfeld BJ (2012) Does exercise-induced muscle damage play a role in skeletal muscle hypertrophy? J Strength Cond Res 26: 1441–1453. doi: 10.1519/jsc.0b013e31824f207e
[43]  Armand AS, Launay T, Gaspera BD, Charbonnier F, Gallien CL, et al. (2003) Effects of eccentric treadmill running on mouse soleus: degeneration/regeneration studied with Myf-5 and MyoD probes. Acta Physiol Scand 179: 75–84. doi: 10.1046/j.1365-201x.2003.01187.x
[44]  Magalhaes J, Fraga M, Lumini-Oliveira J, Goncalves I, Costa M, et al. (2013) Eccentric exercise transiently affects mice skeletal muscle mitochondrial function. Appl Physiol Nutr Metab 38: 401–409. doi: 10.1139/apnm-2012-0226
[45]  Yang Y, Jemiolo B, Trappe S (2006) Proteolytic mRNA expression in response to acute resistance exercise in human single skeletal muscle fibers. J Appl Physiol (1985) 101: 1442–1450. doi: 10.1152/japplphysiol.00438.2006
[46]  Choi SJ, Widrick JJ (2010) Calcium-activated force of human muscle fibers following a standardized eccentric contraction. Am J Physiol Cell Physiol 299: C1409–1417. doi: 10.1152/ajpcell.00226.2010
[47]  Ingalls CP, Warren GL, Williams JH, Ward CW, Armstrong RB (1998) E-C coupling failure in mouse EDL muscle after in vivo eccentric contractions. J Appl Physiol (1985) 85: 58–67.
[48]  Stupka N, Tarnopolsky MA, Yardley NJ, Phillips SM (2001) Cellular adaptation to repeated eccentric exercise-induced muscle damage. J Appl Physiol (1985) 91: 1669–1678.
[49]  Murphy RM (2010) Calpains, skeletal muscle function and exercise. Clin Exp Pharmacol Physiol 37: 385–391. doi: 10.1111/j.1440-1681.2009.05310.x
[50]  Barash IA, Peters D, Friden J, Lutz GJ, Lieber RL (2002) Desmin cytoskeletal modifications after a bout of eccentric exercise in the rat. Am J Physiol Regul Integr Comp Physiol 283: R958–963.
[51]  Yu JG, Thornell LE (2002) Desmin and actin alterations in human muscles affected by delayed onset muscle soreness: a high resolution immunocytochemical study. Histochem Cell Biol 118: 171–179.
[52]  Lieber RL, Schmitz MC, Mishra DK, Friden J (1994) Contractile and cellular remodeling in rabbit skeletal muscle after cyclic eccentric contractions. J Appl Physiol (1985) 77: 1926–1934.
[53]  Karagounis LG, Yaspelkis BB 3rd, Reeder DW, Lancaster GI, Hawley JA, et al. (2010) Contraction-induced changes in TNFalpha and Akt-mediated signalling are associated with increased myofibrillar protein in rat skeletal muscle. Eur J Appl Physiol 109: 839–848. doi: 10.1007/s00421-010-1427-5
[54]  Isner-Horobeti ME, Dufour SP, Vautravers P, Geny B, Coudeyre E, et al. (2013) Eccentric exercise training: modalities, applications and perspectives. Sports Med 43: 483–512. doi: 10.1007/s40279-013-0052-y
[55]  Rattray B, Thompson M, Ruell P, Caillaud C (2013) Specific training improves skeletal muscle mitochondrial calcium homeostasis after eccentric exercise. Eur J Appl Physiol 113: 427–436. doi: 10.1007/s00421-012-2446-1
[56]  Roberts CK, Barnard RJ, Jasman A, Balon TW (1999) Acute exercise increases nitric oxide synthase activity in skeletal muscle. Am J Physiol 277: E390–394.
[57]  Pye D, Palomero J, Kabayo T, Jackson MJ (2007) Real-time measurement of nitric oxide in single mature mouse skeletal muscle fibres during contractions. J Physiol 581: 309–318. doi: 10.1113/jphysiol.2006.125930
[58]  Murphy RM, Vissing K, Latchman H, Lamboley C, McKenna MJ, et al. (2011) Activation of skeletal muscle calpain-3 by eccentric exercise in humans does not result in its translocation to the nucleus or cytosol. J Appl Physiol (1985) 111: 1448–1458. doi: 10.1152/japplphysiol.00441.2011
[59]  Murphy RM, Goodman CA, McKenna MJ, Bennie J, Leikis M, et al. (2007) Calpain-3 is autolyzed and hence activated in human skeletal muscle 24 h following a single bout of eccentric exercise. J Appl Physiol (1985) 103: 926–931. doi: 10.1152/japplphysiol.01422.2006
[60]  Kerksick CM, Roberts MD, Dalbo VJ, Kreider RB, Willoughby DS (2013) Changes in skeletal muscle proteolytic gene expression after prophylactic supplementation of EGCG and NAC and eccentric damage. Food Chem Toxicol.
[61]  Kostek MC, Chen YW, Cuthbertson DJ, Shi R, Fedele MJ, et al. (2007) Gene expression responses over 24 h to lengthening and shortening contractions in human muscle: major changes in CSRP3, MUSTN1, SIX1, and FBXO32. Physiol Genomics 31: 42–52. doi: 10.1152/physiolgenomics.00151.2006
[62]  Nedergaard A, Vissing K, Overgaard K, Kjaer M, Schjerling P (2007) Expression patterns of atrogenic and ubiquitin proteasome component genes with exercise: effect of different loading patterns and repeated exercise bouts. J Appl Physiol (1985) 103: 1513–1522. doi: 10.1152/japplphysiol.01445.2006
[63]  Okada A, Ono Y, Nagatomi R, Kishimoto KN, Itoi E (2008) Decreased muscle atrophy F-box (MAFbx) expression in regenerating muscle after muscle-damaging exercise. Muscle Nerve 38: 1246–1253. doi: 10.1002/mus.21110
[64]  Heck TG, Scholer CM, de Bittencourt PI (2011) HSP70 expression: does it a novel fatigue signalling factor from immune system to the brain? Cell Biochem Funct 29: 215–226. doi: 10.1002/cbf.1739
[65]  Lollo PC, Moura CS, Morato PN, Amaya-Farfan J (2013) Differential response of heat shock proteins to uphill and downhill exercise in heart, skeletal muscle, lung and kidney tissues. J Sports Sci Med 12: 461–466.
[66]  Mikkelsen UR, Paulsen G, Schjerling P, Helmark IC, Langberg H, et al. (2013) The heat shock protein response following eccentric exercise in human skeletal muscle is unaffected by local NSAID infusion. Eur J Appl Physiol 113: 1883–1893. doi: 10.1007/s00421-013-2606-y
[67]  Lomonosova YN, Shenkman BS, Nemirovskaya TL (2013) Signaling effects of substrate stimulation of nNOS in rat soleus after eccentric exercise. Dokl Biochem Biophys 452: 271–275. doi: 10.1134/s1607672913050177

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133