[1] | Balat M, Balat H (2009) Recent trends in global production and utilization of bio-ethanol fuel. Appl Energ 86: 2273–2282. doi: 10.1016/j.apenergy.2009.03.015
|
[2] | Demirbas A (2011) Competitive liquid biofuels from biomass. Appl Energ 88: 17–28. doi: 10.1016/j.apenergy.2010.07.016
|
[3] | Bala M, Balat H, Oz C (2008) Progress in bioethanol processing. Prog Energ Combust 34: 551–573. doi: 10.1016/j.pecs.2007.11.001
|
[4] | Demirbas A (2009) Political, economic and environmental impacts of biofuels: A review. Appl Energ 86: 108–117. doi: 10.1016/j.apenergy.2009.04.036
|
[5] | Koh LP, Ghazoul J (2008) Biofuels, biodiversity, and people: Understanding the conflicts and finding opportunities. Biol Conserv 141: 2450–2460. doi: 10.1016/j.biocon.2008.08.005
|
[6] | Zegada-Lizarazu W, Monti A (2012) Are we ready to cultivate sweet sorghum as a bioenergy feedstock? A review on field management practices. Biomass Bioenerg 40: 1–12. doi: 10.1016/j.biombioe.2012.01.048
|
[7] | Rooney WL, Blumenthal J, Bean B (2007) Designing sorghum as a dedicated bioenergy feedstock. Biofuels Bioprod Bioref 1: 147–157. doi: 10.1002/bbb.15
|
[8] | Calvi?o M, Messing J (2012) Sweet sorghum as a model system for bioenergy crops. Curr Opin Biotech 23: 323–329. doi: 10.1016/j.copbio.2011.12.002
|
[9] | Wu X, Staggenborgb S, Propheterb JL, Rooney WL, Yu J, et al. (2010) Features of sweet sorghum juice and their performance in ethanol fermentation. Ind Crop Prod 31: 164–170. doi: 10.1016/j.indcrop.2009.10.006
|
[10] | Kwon Y, Wanga F, Liu C (2011) Deep-bed solid state fermentation of sweet sorghum stalk to ethanol by thermotolerant Issatchenkia orientalis IPE 100. Bioresource Technol 102: 11262–11265. doi: 10.1016/j.biortech.2011.09.103
|
[11] | Gibbons WR, Westby CA, Dobbs TL (1986) Intermediate-scale, semicontinuous solid-phase fermentation process for production of fuel ethanol from sweet sorghum. Appl Environ Microb 51: 115–122.
|
[12] | Kargi F, Curme JA, Sheehan JJ (1985) Solid-state fermentation of sweet sorghum to ethanol. Biotechnol Bioeng 27: 34–40. doi: 10.1002/bit.260270106
|
[13] | H?lker U, Lenz JR (2005) Solid-state fermentation–are there any biotechnological advantages? Curr Opin Microbiol 8: 301–306. doi: 10.1016/j.mib.2005.04.006
|
[14] | Krishna C (2005) Solid-state fermentation systems-an overview. Crit Rev Biotechnol 25: 1–30. doi: 10.1080/07388550590925383
|
[15] | Raghavarao KSMS, Ranganathan TV, Karanth NG (2003) Some engineering aspects of solid-state fermentation. Biochem Eng J 13: 127–135. doi: 10.1016/s1369-703x(02)00125-0
|
[16] | Pandey A (2003) Solid-state fermentation. Biochem Eng J 13: 81–84. doi: 10.1016/s1369-703x(02)00121-3
|
[17] | Wang E, Li S, Tao L, Geng X, Li T (2010) Modeling of rotating drum bioreactor for anaerobic solid-state fermentation. Appl Energ 87: 2839–2845. doi: 10.1016/j.apenergy.2009.05.032
|
[18] | Kargi F, Curme JA (1985) Solid-state fermentation of sweet sorghum to ethanol in a rotary-drum fermentor. Biotechnol Bioeng 27: 1122–1125. doi: 10.1002/bit.260270806
|
[19] | Bryan WL, Monroe GE, Caussanel PM (1985) Solid-phase fermentation and juice expression systems for sweet sorghum. Transactions of the ASAE (American Society of Agricultural Engineers) 28: 268–274. doi: 10.13031/2013.32239
|
[20] | Lu H, Cai Y, Wu Z, Jia J, Bai F (2004) Kazachstania aerobia sp. Nov., an ascomycetous yeast species from aerobically deteriorating corn silage. Int J Syst Evol Micr 54: 2431–2435. doi: 10.1099/ijs.0.63257-0
|
[21] | Shen F, Liu R (2009) Research on solid-state ethanol fermentation using dry sweet sorghum stalk particles with active dry yeast. Energ Fuel 23: 519–525. doi: 10.1021/ef800531e
|
[22] | Matsakas L, Christakopoulos P (2013) Optimization of ethanol production from high dry matter liquefied dry sweet sorghum stalks. Biomass Bioenerg 51: 91–98. doi: 10.1016/j.biombioe.2013.01.007
|
[23] | Saitou N, Nei M (1987) The neighbor-joining method: A new method for reconstructing phylogenetic trees. Mol Biol Evol 4: 406–425.
|
[24] | Felsenstein J (1985) Confidence limits on phylogenies: An approach using the bootstrap. Evolution 39: 783–791. doi: 10.2307/2408678
|
[25] | Kurtzman CP, Fell JW, Boekhout T, Robert V (2011) Methods for isolation, phenotypic characterization and maintenance of yeasts. In: Kurtzman CP, Fell JW Boekhout T, editors. The Yeasts, a Taxonomic Study, 5th edn. Elsevier Science Publishers, Amsterdam. pp. 87–110.
|
[26] | McClary D, Nulty W, Miller G (1959) Effect of potassium versus sodium in the sporulation of Saccharomyces. J Bacteriol 78: 362–368
|
[27] | Haber JE (2012) Mating-type genes and MAT switching in Saccharomyces cerevisiae. Genetics 191: 33–64. doi: 10.1534/genetics.111.134577
|
[28] | Luttig M, Pretorius IS, Zyl WH (19997) Cloning of two b-xylanase-encoding genes from Aspergillus niger and their expression in Saccharomyces cerevisiae. Biotechnol Lett 19: 411–415.
|
[29] | Bammert GF, Fostel JM (2000) Genome-wide expression patterns in Saccharomyces cerevisiae: Comparison of drug treatments and genetic alterations affecting biosynthesis of ergosterol. Antimicro Agents Chemother 44: 1255–1265. doi: 10.1128/aac.44.5.1255-1265.2000
|
[30] | Tsoularisa A, Wallace J (2001) Analysis of logistic growth models. Math Biosci 179: 21–55.
|
[31] | Miller GL (1959) Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal Chem 31: 426–428. doi: 10.1021/ac60147a030
|
[32] | Mortimer RK, Johnston JR (1986) Genealogy of principal strains of the Yeast Genetic Stock Center. Genetics 113: 35–43.
|
[33] | Mitchell DA, Lonsane BK (1992) In solid substrate cultivation. Doelle HW, Mitchell DA, Rolz CE, editors. Elsevier, Essex, England. pp: 1–16.
|
[34] | Tanaka K, Ishii Y, Ogawa J, Shima J (2012) Enhancement of acetic acid tolerance in Saccharomyces cerevisiae by overexpression of the HAA1 gene, encoding a transcriptional activator. Appl Environ Microbiol 78: 8161–8163. doi: 10.1128/aem.02356-12
|
[35] | Benjaphokee S, Hasegawa D, Yokota D, Asvarak T, Auesukaree C, et al. (2012) Highly efficient bioethanol production by a Saccharomyces cerevisiae strain with multiple stress tolerance to high temperature, acid and ethanol. New Biotechnol 29: 379–386. doi: 10.1016/j.nbt.2011.07.002
|
[36] | Sree NK, Sridhar M, Suresh K, Banat IM, Rao LV (2000) Isolation of thermotolerant, osmotolerant, flocculating Saccharomyces cerevisiae for ethanol production. Bioresource Technol 72: 43–46. doi: 10.1016/s0960-8524(99)90097-4
|
[37] | Edgardo A, Carolinaa P, Manuel RI, Juanita F, Jaime B (2008) Selection of thermotolerant yeast strains Saccharomyces cerevisiae for bioethanol production. Enzyme Microb Tech 43: 120–123. doi: 10.1016/j.enzmictec.2008.02.007
|
[38] | Lingle SE, Tew TL, Rukavina H, Boykin DL (2013) Post-harvest changes in sweet sorghum I: Brix and sugars. Bioenerg Res 5: 158–167. doi: 10.1007/s12155-011-9164-0
|
[39] | Egg RP, Coble CG, Engler CR, Lewis DH (1993) Feedstock storage, handling and processing. Biomass Bioenerg 5: 71–94. doi: 10.1016/0961-9534(93)90009-s
|
[40] | Jasberg B, Montgomery R, Anderson R (1983) Preservation of sweet sorghum biomass. Biotechnol Bioeng Symp 13: 113–120.
|
[41] | Eckhoff SR, Bender DA, Okos MR, Peart RM (1983) Preservation of chopped sweet sorghum using sulfur dioxide. ASAE Tech Pap 83: 3558–3561 doi: 10.13031/2013.32306
|
[42] | Crago CL, Khanna M, Barton J, Giuliani E, Amaral W (2010) Competitiveness of Brazilian sugarcane ethanol compared to US corn ethanol. Energ Policy 38: 7404–7415. doi: 10.1016/j.enpol.2010.08.016
|
[43] | Koizumi T (2013) Biofuel and food security in China and Japan. Renew Sust Energ Rev 21: 102–109. doi: 10.1016/j.rser.2012.12.047
|
[44] | Yu J, Zhang X, Tan T (2008) Ethanol production by solid state fermentation of sweet sorghum using thermotolerant yeast strain. Fuel Process Technol 89: 1056–1059. doi: 10.1016/j.fuproc.2008.04.008
|
[45] | Geng AL, Wang ZK, Lai KS, Tan MWY (2010) Bioenergy II: Comparison of laboratory and industrial Saccharomyces cerevisiae strains for their stress tolerance. Int J Chem Reactor Eng 8..
|
[46] | Zheng D, Wu X, Tao X, Wang P, Li P, et al. (2011) Screening and construction of Saccharomyces cerevisiae strains with improved multi-tolerance and bioethanol fermentation performance. Bioresource Technol 102: 3020–3027. doi: 10.1016/j.biortech.2010.09.122
|
[47] | Lewis J, Learmonth R, Attfield P, Watson K (1997) Stress co-tolerance and trehalose content in baking strains of Saccharomyces cerevisiae. J Ind Microbiol Biot 18: 30–36. doi: 10.1038/sj.jim.2900347
|
[48] | Henk LL, Linden JC (1996) Solid-state production of ethanol from sorghum. Appl Biochem Biotech 57–58: 489–501. doi: 10.1007/bf02941729
|
[49] | Yu J, Zhong J, Zhang X, Tan T (2010) Ethanol production from H2SO3-Steam-Pretreated fresh sweet sorghum stem by simultaneous saccharification and fermentation. Appl Biochem Biotech 160: 401–409. doi: 10.1007/s12010-008-8333-x
|
[50] | Basavaraj G, Rao PP, Basu K, Reddy CR, AshokKumar A, et al. (2013) Assessing viability of bio-ethanol production from sweet sorghum in India. Energ Policy 56: 501–508. doi: 10.1016/j.enpol.2013.01.012
|
[51] | Linton JA, Miller JC, Little RD, Petrolia DR, Coble KH (2011) Economic feasibility of producing sweet sorghum as an ethanol feedstock in the southeastern United States. Biomass Bioenerg 35: 3050–3057. doi: 10.1016/j.biombioe.2011.04.007
|
[52] | Li S, Li G, Zhang L, Zhou Z, Han B, et al. (2013) A demonstration study of ethanol production from sweet sorghum stems with advanced solid state fermentation technology. Appl Energ 102: 260–265. doi: 10.1016/j.apenergy.2012.09.060
|