全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS ONE  2014 

A Novel Wild-Type Saccharomyces cerevisiae Strain TSH1 in Scaling-Up of Solid-State Fermentation of Ethanol from Sweet Sorghum Stalks

DOI: 10.1371/journal.pone.0094480

Full-Text   Cite this paper   Add to My Lib

Abstract:

The rising demand for bioethanol, the most common alternative to petroleum-derived fuel used worldwide, has encouraged a feedstock shift to non-food crops to reduce the competition for resources between food and energy production. Sweet sorghum has become one of the most promising non-food energy crops because of its high output and strong adaptive ability. However, the means by which sweet sorghum stalks can be cost-effectively utilized for ethanol fermentation in large-scale industrial production and commercialization remains unclear. In this study, we identified a novel Saccharomyces cerevisiae strain, TSH1, from the soil in which sweet sorghum stalks were stored. This strain exhibited excellent ethanol fermentative capacity and ability to withstand stressful solid-state fermentation conditions. Furthermore, we gradually scaled up from a 500-mL flask to a 127-m3 rotary-drum fermenter and eventually constructed a 550-m3 rotary-drum fermentation system to establish an efficient industrial fermentation platform based on TSH1. The batch fermentations were completed in less than 20 hours, with up to 96 tons of crushed sweet sorghum stalks in the 550-m3 fermenter reaching 88% of relative theoretical ethanol yield (RTEY). These results collectively demonstrate that ethanol solid-state fermentation technology can be a highly efficient and low-cost solution for utilizing sweet sorghum, providing a feasible and economical means of developing non-food bioethanol.

References

[1]  Balat M, Balat H (2009) Recent trends in global production and utilization of bio-ethanol fuel. Appl Energ 86: 2273–2282. doi: 10.1016/j.apenergy.2009.03.015
[2]  Demirbas A (2011) Competitive liquid biofuels from biomass. Appl Energ 88: 17–28. doi: 10.1016/j.apenergy.2010.07.016
[3]  Bala M, Balat H, Oz C (2008) Progress in bioethanol processing. Prog Energ Combust 34: 551–573. doi: 10.1016/j.pecs.2007.11.001
[4]  Demirbas A (2009) Political, economic and environmental impacts of biofuels: A review. Appl Energ 86: 108–117. doi: 10.1016/j.apenergy.2009.04.036
[5]  Koh LP, Ghazoul J (2008) Biofuels, biodiversity, and people: Understanding the conflicts and finding opportunities. Biol Conserv 141: 2450–2460. doi: 10.1016/j.biocon.2008.08.005
[6]  Zegada-Lizarazu W, Monti A (2012) Are we ready to cultivate sweet sorghum as a bioenergy feedstock? A review on field management practices. Biomass Bioenerg 40: 1–12. doi: 10.1016/j.biombioe.2012.01.048
[7]  Rooney WL, Blumenthal J, Bean B (2007) Designing sorghum as a dedicated bioenergy feedstock. Biofuels Bioprod Bioref 1: 147–157. doi: 10.1002/bbb.15
[8]  Calvi?o M, Messing J (2012) Sweet sorghum as a model system for bioenergy crops. Curr Opin Biotech 23: 323–329. doi: 10.1016/j.copbio.2011.12.002
[9]  Wu X, Staggenborgb S, Propheterb JL, Rooney WL, Yu J, et al. (2010) Features of sweet sorghum juice and their performance in ethanol fermentation. Ind Crop Prod 31: 164–170. doi: 10.1016/j.indcrop.2009.10.006
[10]  Kwon Y, Wanga F, Liu C (2011) Deep-bed solid state fermentation of sweet sorghum stalk to ethanol by thermotolerant Issatchenkia orientalis IPE 100. Bioresource Technol 102: 11262–11265. doi: 10.1016/j.biortech.2011.09.103
[11]  Gibbons WR, Westby CA, Dobbs TL (1986) Intermediate-scale, semicontinuous solid-phase fermentation process for production of fuel ethanol from sweet sorghum. Appl Environ Microb 51: 115–122.
[12]  Kargi F, Curme JA, Sheehan JJ (1985) Solid-state fermentation of sweet sorghum to ethanol. Biotechnol Bioeng 27: 34–40. doi: 10.1002/bit.260270106
[13]  H?lker U, Lenz JR (2005) Solid-state fermentation–are there any biotechnological advantages? Curr Opin Microbiol 8: 301–306. doi: 10.1016/j.mib.2005.04.006
[14]  Krishna C (2005) Solid-state fermentation systems-an overview. Crit Rev Biotechnol 25: 1–30. doi: 10.1080/07388550590925383
[15]  Raghavarao KSMS, Ranganathan TV, Karanth NG (2003) Some engineering aspects of solid-state fermentation. Biochem Eng J 13: 127–135. doi: 10.1016/s1369-703x(02)00125-0
[16]  Pandey A (2003) Solid-state fermentation. Biochem Eng J 13: 81–84. doi: 10.1016/s1369-703x(02)00121-3
[17]  Wang E, Li S, Tao L, Geng X, Li T (2010) Modeling of rotating drum bioreactor for anaerobic solid-state fermentation. Appl Energ 87: 2839–2845. doi: 10.1016/j.apenergy.2009.05.032
[18]  Kargi F, Curme JA (1985) Solid-state fermentation of sweet sorghum to ethanol in a rotary-drum fermentor. Biotechnol Bioeng 27: 1122–1125. doi: 10.1002/bit.260270806
[19]  Bryan WL, Monroe GE, Caussanel PM (1985) Solid-phase fermentation and juice expression systems for sweet sorghum. Transactions of the ASAE (American Society of Agricultural Engineers) 28: 268–274. doi: 10.13031/2013.32239
[20]  Lu H, Cai Y, Wu Z, Jia J, Bai F (2004) Kazachstania aerobia sp. Nov., an ascomycetous yeast species from aerobically deteriorating corn silage. Int J Syst Evol Micr 54: 2431–2435. doi: 10.1099/ijs.0.63257-0
[21]  Shen F, Liu R (2009) Research on solid-state ethanol fermentation using dry sweet sorghum stalk particles with active dry yeast. Energ Fuel 23: 519–525. doi: 10.1021/ef800531e
[22]  Matsakas L, Christakopoulos P (2013) Optimization of ethanol production from high dry matter liquefied dry sweet sorghum stalks. Biomass Bioenerg 51: 91–98. doi: 10.1016/j.biombioe.2013.01.007
[23]  Saitou N, Nei M (1987) The neighbor-joining method: A new method for reconstructing phylogenetic trees. Mol Biol Evol 4: 406–425.
[24]  Felsenstein J (1985) Confidence limits on phylogenies: An approach using the bootstrap. Evolution 39: 783–791. doi: 10.2307/2408678
[25]  Kurtzman CP, Fell JW, Boekhout T, Robert V (2011) Methods for isolation, phenotypic characterization and maintenance of yeasts. In: Kurtzman CP, Fell JW Boekhout T, editors. The Yeasts, a Taxonomic Study, 5th edn. Elsevier Science Publishers, Amsterdam. pp. 87–110.
[26]  McClary D, Nulty W, Miller G (1959) Effect of potassium versus sodium in the sporulation of Saccharomyces. J Bacteriol 78: 362–368
[27]  Haber JE (2012) Mating-type genes and MAT switching in Saccharomyces cerevisiae. Genetics 191: 33–64. doi: 10.1534/genetics.111.134577
[28]  Luttig M, Pretorius IS, Zyl WH (19997) Cloning of two b-xylanase-encoding genes from Aspergillus niger and their expression in Saccharomyces cerevisiae. Biotechnol Lett 19: 411–415.
[29]  Bammert GF, Fostel JM (2000) Genome-wide expression patterns in Saccharomyces cerevisiae: Comparison of drug treatments and genetic alterations affecting biosynthesis of ergosterol. Antimicro Agents Chemother 44: 1255–1265. doi: 10.1128/aac.44.5.1255-1265.2000
[30]  Tsoularisa A, Wallace J (2001) Analysis of logistic growth models. Math Biosci 179: 21–55.
[31]  Miller GL (1959) Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal Chem 31: 426–428. doi: 10.1021/ac60147a030
[32]  Mortimer RK, Johnston JR (1986) Genealogy of principal strains of the Yeast Genetic Stock Center. Genetics 113: 35–43.
[33]  Mitchell DA, Lonsane BK (1992) In solid substrate cultivation. Doelle HW, Mitchell DA, Rolz CE, editors. Elsevier, Essex, England. pp: 1–16.
[34]  Tanaka K, Ishii Y, Ogawa J, Shima J (2012) Enhancement of acetic acid tolerance in Saccharomyces cerevisiae by overexpression of the HAA1 gene, encoding a transcriptional activator. Appl Environ Microbiol 78: 8161–8163. doi: 10.1128/aem.02356-12
[35]  Benjaphokee S, Hasegawa D, Yokota D, Asvarak T, Auesukaree C, et al. (2012) Highly efficient bioethanol production by a Saccharomyces cerevisiae strain with multiple stress tolerance to high temperature, acid and ethanol. New Biotechnol 29: 379–386. doi: 10.1016/j.nbt.2011.07.002
[36]  Sree NK, Sridhar M, Suresh K, Banat IM, Rao LV (2000) Isolation of thermotolerant, osmotolerant, flocculating Saccharomyces cerevisiae for ethanol production. Bioresource Technol 72: 43–46. doi: 10.1016/s0960-8524(99)90097-4
[37]  Edgardo A, Carolinaa P, Manuel RI, Juanita F, Jaime B (2008) Selection of thermotolerant yeast strains Saccharomyces cerevisiae for bioethanol production. Enzyme Microb Tech 43: 120–123. doi: 10.1016/j.enzmictec.2008.02.007
[38]  Lingle SE, Tew TL, Rukavina H, Boykin DL (2013) Post-harvest changes in sweet sorghum I: Brix and sugars. Bioenerg Res 5: 158–167. doi: 10.1007/s12155-011-9164-0
[39]  Egg RP, Coble CG, Engler CR, Lewis DH (1993) Feedstock storage, handling and processing. Biomass Bioenerg 5: 71–94. doi: 10.1016/0961-9534(93)90009-s
[40]  Jasberg B, Montgomery R, Anderson R (1983) Preservation of sweet sorghum biomass. Biotechnol Bioeng Symp 13: 113–120.
[41]  Eckhoff SR, Bender DA, Okos MR, Peart RM (1983) Preservation of chopped sweet sorghum using sulfur dioxide. ASAE Tech Pap 83: 3558–3561 doi: 10.13031/2013.32306
[42]  Crago CL, Khanna M, Barton J, Giuliani E, Amaral W (2010) Competitiveness of Brazilian sugarcane ethanol compared to US corn ethanol. Energ Policy 38: 7404–7415. doi: 10.1016/j.enpol.2010.08.016
[43]  Koizumi T (2013) Biofuel and food security in China and Japan. Renew Sust Energ Rev 21: 102–109. doi: 10.1016/j.rser.2012.12.047
[44]  Yu J, Zhang X, Tan T (2008) Ethanol production by solid state fermentation of sweet sorghum using thermotolerant yeast strain. Fuel Process Technol 89: 1056–1059. doi: 10.1016/j.fuproc.2008.04.008
[45]  Geng AL, Wang ZK, Lai KS, Tan MWY (2010) Bioenergy II: Comparison of laboratory and industrial Saccharomyces cerevisiae strains for their stress tolerance. Int J Chem Reactor Eng 8..
[46]  Zheng D, Wu X, Tao X, Wang P, Li P, et al. (2011) Screening and construction of Saccharomyces cerevisiae strains with improved multi-tolerance and bioethanol fermentation performance. Bioresource Technol 102: 3020–3027. doi: 10.1016/j.biortech.2010.09.122
[47]  Lewis J, Learmonth R, Attfield P, Watson K (1997) Stress co-tolerance and trehalose content in baking strains of Saccharomyces cerevisiae. J Ind Microbiol Biot 18: 30–36. doi: 10.1038/sj.jim.2900347
[48]  Henk LL, Linden JC (1996) Solid-state production of ethanol from sorghum. Appl Biochem Biotech 57–58: 489–501. doi: 10.1007/bf02941729
[49]  Yu J, Zhong J, Zhang X, Tan T (2010) Ethanol production from H2SO3-Steam-Pretreated fresh sweet sorghum stem by simultaneous saccharification and fermentation. Appl Biochem Biotech 160: 401–409. doi: 10.1007/s12010-008-8333-x
[50]  Basavaraj G, Rao PP, Basu K, Reddy CR, AshokKumar A, et al. (2013) Assessing viability of bio-ethanol production from sweet sorghum in India. Energ Policy 56: 501–508. doi: 10.1016/j.enpol.2013.01.012
[51]  Linton JA, Miller JC, Little RD, Petrolia DR, Coble KH (2011) Economic feasibility of producing sweet sorghum as an ethanol feedstock in the southeastern United States. Biomass Bioenerg 35: 3050–3057. doi: 10.1016/j.biombioe.2011.04.007
[52]  Li S, Li G, Zhang L, Zhou Z, Han B, et al. (2013) A demonstration study of ethanol production from sweet sorghum stems with advanced solid state fermentation technology. Appl Energ 102: 260–265. doi: 10.1016/j.apenergy.2012.09.060

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133