The TrkAIII Oncoprotein Inhibits Mitochondrial Free Radical ROS-Induced Death of SH-SY5Y Neuroblastoma Cells by Augmenting SOD2 Expression and Activity at the Mitochondria, within the Context of a Tumour Stem Cell-like Phenotype
The developmental and stress-regulated alternative TrkAIII splice variant of the NGF receptor TrkA is expressed by advanced stage human neuroblastomas (NBs), correlates with worse outcome in high TrkA expressing unfavourable tumours and exhibits oncogenic activity in NB models. In the present study, we report that constitutive TrkAIII expression in human SH-SY5Y NB cells inhibits Rotenone, Paraquat and LY83583-induced mitochondrial free radical reactive oxygen species (ROS)-mediated death by stimulating SOD2 expression, increasing mitochondrial SOD2 activity and attenuating mitochondrial free radical ROS production, in association with increased mitochondrial capacity to produce H2O2, within the context of a more tumour stem cell-like phenotype. This effect can be reversed by the specific TrkA tyrosine kinase inhibitor GW441756, by the multi-kinase TrkA inhibitors K252a, CEP-701 and G?6976, which inhibit SOD2 expression, and by siRNA knockdown of SOD2 expression, which restores the sensitivity of TrkAIII expressing SH-SY5Y cells to Rotenone, Paraquat and LY83583-induced mitochondrial free radical ROS production and ROS-mediated death. The data implicate the novel TrkAIII/SOD2 axis in promoting NB resistance to mitochondrial free radical-mediated death and staminality, and suggest that the combined use of TrkAIII and/or SOD2 inhibitors together with agents that induce mitochondrial free radical ROS-mediated death could provide a therapeutic advantage that may also target the stem cell niche in high TrkA expressing unfavourable NB.
References
[1]
Tacconelli A, Farina AR, Cappabianca L, DeSantis G, Tessitore A, et al. (2004) TrkA Alternative splicing: A regulated tumor-promoting switch in human neuroblastoma. Cancer Cell 6: 347–360. doi: 10.1016/j.ccr.2004.09.011
[2]
Farina AR, Tacconelli A, Cappabianca L, Cea G, Chioda A, et al. (2009) The neuroblastoma tumour-suppressor TrkAI and its oncogenic alternative TrkAIII splice variant exhibit geldanamycin-sensitive interactions with Hsp90 in human neuroblastoma cells. Oncogene 28: 4075–4094. doi: 10.1038/onc.2009.256
[3]
Farina AR, Tacconelli A, Cappabianca L, Cea G, Panella S, et al. (2009) The TrkAIII splice variant targets the centrosome and promotes genetic instability. Mol Cell Biol 29: 4812–4830. doi: 10.1128/mcb.00352-09
[4]
Farina AR, Cappabianca L, Ruggeri P, Di Ianni N, Ragone M, et al. (2012) Alternative TrkA splicing and neuroblastoma. In: Neuroblastoma Present and Future (Ed. Hiroyuki Shimada, Intech, Croatia); 111–136.
[5]
Farina AR, Di Ianni N, Cappabianca L, Ruggeri P, Ragone M, et al. (2013) TrkAIII promotes microtubule nucleation and assembly at the centrosome in SH-SY5Y neuroblastoma cells, contributing to an undifferentiated anaplastic phenotype. Biomed Res Int Available: http://dx.doi.org/10.1155/2013/740187.
[6]
Schramm A, Schowe B, Fielitz K, Heilman M, Martin M, et al. (2012) Exon-level expression analysis identify MYCN and NTRK1 as major determinants of alternative exon usage and robustly predict neuroblastoma outcome. Br J Cancer 107: 1409–1417.
[7]
Simpson AM, Iyer R, Mangino JL, Minturn JE, Zhao H, et al. (2012) TrkAIII isoform expression upregulates stem cell markers and correlates with worse outcome in neuroblastomas (NBs). Proc Adv Neuroblastoma Res p.164 (POT055).
[8]
Tacconelli A, Farina AR, Cappabianca L, Cea G, Panella S, et al. (2007) TrkAIII expression in the thymus. J Neuroimmunol 183: 151–161. doi: 10.1016/j.jneuroim.2006.12.005
[9]
Watson FL, Porcionatto MA, Bhattacharyya A, Stiles CD, Segal RA (1999) TrkA glycosylation regulates receptor localisation and activity. J Neurobiol 39: 323–336. doi: 10.1002/(sici)1097-4695(199905)39:2<323::aid-neu15>3.0.co;2-4
Barker PA, Lomen-Hoerth C, Gensch EM, Meakin SO, Glass DJ, et al. (1993) Tissue-specific alternative splicing generates two isoforms of the TrkA receptor. J Biol Chem 268: 15150–15157.
[12]
Lavenius E, Gestblom C, Johansson I, N?nberg E, P?hlman S (1995) Transfection of TRK-A into human neuroblastoma cells restores their ability to differentiate in response to nerve growth factor. Cell Growth & Differ 6: 727–736.
[13]
Lucarelli E, Kaplan D, Thiele CJ (1997) Activation of Trk-A but not Trk-B signal transduction pathway inhibits growth of neuroblastoma cells. Eur J Cancer 33: 2068–2070. doi: 10.1016/s0959-8049(97)00266-9
[14]
Bedogni B, Pani G, Colavitti R, Riccio A, Borrello S, et al. (2003) Redox regulation of cAMP-responsive element-binding protein and induction of manganous superoxide dismutase in nerve growth factor-dependent cell survival. J Biol Chem 278: 16510–16519. doi: 10.1074/jbc.m301089200
[15]
Cassano S, Agnese S, D’Amato V, Papale M, Garbi C, et al. (2010) Reactive oxygen species, Ki-Ras, and mitochondrial superoxide dismutase cooperate in nerve growth factor-induced differentiation of PC12 cells. J Biol Chem 285: 24141–24153. doi: 10.1074/jbc.m109.098525
[16]
Kehrer JP (2000) The Harber-Weiss reaction and the mechanisms of toxicity. Toxicology 149: 43–50. doi: 10.1016/s0300-483x(00)00231-6
[17]
Miriyala S, Holley AK, St Clair DK (2011) Mitochondrial superoxide dismutase-signals of distinction. Anticancer Agents Med Chem 11: 181–190. doi: 10.2174/187152011795255920
[18]
Dhar SK, St. Clair DK (2012) Manganese superoxide dismutase regulation and cancer. Free Radical Biol Med 52: 2209–2222. doi: 10.1016/j.freeradbiomed.2012.03.009
[19]
Li Y, Huang TT, Carlson EJ, Melov S, Ursell PC, et al. (1995) Dilated cardiomyopathy and neonatal lethality in mutant mice lacking manganese superoxide dismutase. Nat Genet 11: 367–381. doi: 10.1038/ng1295-376
[20]
Lebovitz RM, Zhang H, Vogel H, Cartwright J Jr, Dionne L, et al. (1996) Neurodegeneration, myocardial injury, and perinatal death in mitochondrial superoxide dismutase-deficient mice. Proc Natl Acad Sci U S A 93: 9782–9787. doi: 10.1073/pnas.93.18.9782
[21]
Richter C, Park JW, Ames BN (1988) Normal oxidative damage to mitochondrial and nuclear DNA is extensive. Proc Natl Acad Sci U S A 85: 6465–6467. doi: 10.1073/pnas.85.17.6465
[22]
Yeung BH, Wong KY, Lin MC, Wong CK, Mashima T, et al. (2008) Chemosensitisation by manganese superoxide dismutase inhibition is caspase-9 dependent and involves extracellular signal-regulated kinase 1/2. Br J Cancer 99: 283–293.
[23]
Lee JH, Choi IY, Kil IS, Kim SY, Yang ES, et al. (2001) Protective role of superoxide dismutases against ionizing radiation in yeast. Biochim Biophys Acta 1526: 191–198. doi: 10.1016/s0304-4165(01)00126-x
[24]
Takada Y, Hachiya M, Park SH, Osawa Y, Ozawa T, et al. (2002) Role of reactive oxygen species in cells overexpressing manganese superoxide dismutase: mechanism for induction of radioresistance. Mol Cancer Res 1: 137–146.
Epperly MW, Guo H, Bernarding M, Gretton J, Jefferson M, et al. (2003) Delayed intratracheal injection of manganese superoxide dismutase (MnSOD)-plasmid/liposomes provides suboptimal protection against irradiation induced pulmonary injury compared to treatment before irradiation. Gen Ther Mol Biol 7: 61–68.
[27]
Fisher CJ, Goswami PC (2008) Mitochondria-targeted antioxidant enzyme activity regulates radioresistance in human pancreatic cancer cells. Cancer Biol Ther 7: 1271–1279. doi: 10.4161/cbt.7.8.6300
[28]
Mohr A, Buneker C, Gough RP, Zwacka RM (2008) MnSOD protects colorectal cancer cells from TRAIL-induced apoptosis by inhibition of Smac/DIABLO release. Oncogene 27: 763–774. doi: 10.1038/sj.onc.1210673
[29]
Dayem AA, Choi HY, Kim JH, Cho SG (2010) Role of oxidative stress in stem, cancer and cancer stem cells. Cancers 2: 859–884. doi: 10.3390/cancers2020859
[30]
Chatterjee A, Dasgupta S, Sidransky D (2011) Mitochondrial subversion in cancer. Cancer Prev Res 4: 638–654. doi: 10.1158/1940-6207.capr-10-0326
[31]
Hosoki A, Yonekura S, Zhao Q, Wei Z, Takasaki I, et al. (2012) Mitochondria-targeted superoxide dismutase (SOD2) regulates radiation resistance and radiation stress response in HeLa cells. J Radiat Res 53: 58–71. doi: 10.1269/jrr.11034
[32]
Miao L, Clair DK (2009) Regulation of superoxide dismutase genes: implications in disease. Free Rad Biol Med 47: 344–356. doi: 10.1016/j.freeradbiomed.2009.05.018
[33]
Jung JE, Kim GS, Narasimhan P, Song YS, Chan PH (2009) Regulation of Mn-superoxide dismutase activity and neuroprotection by STAT3 in mice after cerebral ischemia. J Neurosci 29: 7003–7014. doi: 10.1523/jneurosci.1110-09.2009
[34]
Chaudhuri L, Nicholson AM, Kalen AL, Goswami PC (2012) Preferential selection of MnSOD transcripts in proliferating normal and cancer cells. Oncogene 31: 1207–1216. doi: 10.1038/onc.2011.325
[35]
Stuart JJ, Egry LA, Wong GH, Kaspar RL (2000) The 3′ UTR of human MnSOD mRNA hybridizes to a small cytoplasmic RNA and inhibits gene expression. Biochem Biophys Res Commun 274: 641–648. doi: 10.1006/bbrc.2000.3189
[36]
Knirsch L, Clerch LB (2001) Tyrosine phosphorylation regulates manganese superoxide dismutase (mnSOD) RNA-binding protein activity and MnSOD protein expression. Biochemistry 40: 7890–7895. doi: 10.1021/bi010197n
[37]
MacMillan-Crow LA, Crow JP, Thompson JA (1998) Peroxynitrite-mediated inactivation of manganese superoxide dismutase involves nitration and oxidation of critical tyrosine residues. Biochemistry 37: 1613–1622. doi: 10.1021/bi971894b
[38]
Holley AK, Dhar SK, Xu Y, St Clair DK (2012) Manganese superoxide dismutase: beyond life and death. Amino Acids 42: 139–158. doi: 10.1007/s00726-010-0600-9
[39]
Oberley LW, Beuttner GR (1979) Role of superoxide dismutase in cancer: a review. Cancer Res 39: 1141–1149.
[40]
Nelson KK, Ranganathan AC, Mansouri J, Rodriguez AM, Providence KM, et al. (2003) Elevated SOD2 activity augments matrix metalloproteinase expression: evidence for the involvement of endogenous hydrogen peroxide in regulating metastasis. Clin Cancer Res 9: 424–432.
[41]
Connor KM, Hempel N, Nelson KK, Dabiri G, Gamarra A, et al. (2007) Manganese superoxide dismutase enhances the invasive and migratory activity of tumor cells. Cancer Res 67: 10260–10267. doi: 10.1158/0008-5472.can-07-1204
[42]
Hempel N, Ye H, Abessi B, Mian B, Melendez JA (2009) Altered redox status accompanies progression to metastatic bladder cancer. Free Rad Biol Med 46: 42–50. doi: 10.1016/j.freeradbiomed.2008.09.020
[43]
Cecere F, Iuliano A, Albano F, Zappelli C, Castellano I, et al. (2010) Diclofenac-induced apoptosis in neuroblastoma cell line SH-SY5Y: Possible involvement of the mitochondrial superoxide dismutase. J Biomed Biotechnol 2010: 801726. doi: 10.1155/2010/801726
[44]
Keller JN, Kindy MS, Holtsberg FW, St Clair DK, Yen HC, et al. (1998) Mitochondrial manganese superoxide dismutase prevents neural apoptosis and reduces ischemic brain injury: suppression of peroxynitrite production, lipid peroxidation, and mitochondrial dysfunction. J Neurosci 18: 687–697.
[45]
Madhavan L, Ourednik V, Ourednik J (2006) Increased “vigilance” of antioxidant mechanisms in neural stem cells potentiates their capability to resist oxidative stress. Stem Cells 24: 2110–2119. doi: 10.1634/stemcells.2006-0018
[46]
Madhavan L, Ourednik V, Ourednik J (2008) Neural stem/progenitor cells initiate the formation of cellular networks that provide neuroprotection by growth factor-modulated antioxidant expression. Stem Cells 26: 254–265. doi: 10.1634/stemcells.2007-0221
[47]
Santillo M, Mondola P, Serù R, Annella T, Cassano S, et al. (2001) Opposing functions of Ki- and Ha-Ras genes in the regulation of redox signals. Current Biol 11: 614–619. doi: 10.1016/s0960-9822(01)00159-2
[48]
Kirkland RA, Saavedra GM, Franklin JL (2007) Rapid activation of antioxidant defences by nerve growth factor suppresses reactive oxygen species during neuronal apoptosis: evidence for a role in cytochrome c redistribution. J Neurosci 27: 11315–11326. doi: 10.1523/jneurosci.3590-07.2007
Behrens MM, Strasser U, Choi DW (1999) G?6976 is a potent inhibitor of neurotrophin-receptor intrinsic tyrosine kinase. J Neurochem 72: 919–924. doi: 10.1046/j.1471-4159.1999.0720919.x
[51]
Wood ER, Kuyper L, Petrov KG, Hunter RN, Harris PA (2004) Discovery and in vitro evaluation of potent TrkA kinase inhibitors: oxindole and aza-oxindoles. Bioorg Med Chem Lett 14: 953–957. doi: 10.1016/j.bmcl.2003.12.002
[52]
Chang YT, Choi G, Bae YS, Burdett M, Moon HS, et al. (2002) Purine-based inhibitors of insositol-1, 4,5trisphosphate-3-kinase. Chembiochem 3: 897–901. doi: 10.1002/1439-7633(20020902)3:9<897::aid-cbic897>3.0.co;2-b
[53]
Alessi DR, Cuenda A, Cohen P, Dudley DT, Saltiel AR (1995) PD O98059 is a specific inhibitor of the activation of mitogen-activated protein kinase kinase in vitro and in vivo. J Biol Chem 270: 27498–27494. doi: 10.1074/jbc.270.46.27489
[54]
Liu SF, Ye X, Malik AB (1999) Inhibition of NF-κB by pyrrolidine dithiocarbamate prevents in vivo expression of proinflammatory genes. Circulation 100: 1330–1337. doi: 10.1161/01.cir.100.12.1330
[55]
Mori N, Yamada Y, Ikeda S, Yamasaki Y, Tsukasaki K, et al. (2002) Bay 11–7082 inhibits transcription factor NF-κB and induces apoptosis of HTLV-1-infected T-cell lines and primary adult T-cell leukemia cells. Blood 100: 1828–1834. doi: 10.1182/blood-2002-01-0151
[56]
Li N, Ragheb K, Lawler G, Sturgis J, Ralwa B, et al. (2003) Mitochondrial complex I inhibitor rotenone induces apoptosis through enhancing mitochondrial reactive oxygen species production. J Biol Chem 278: 8516–8525. doi: 10.1074/jbc.m210432200
[57]
Zhong C, Liu XH, Hao XD, Chang J, Sun X (2013) Synthesis and biological evaluation of novel neuroprotective agents for paraquat-induced apoptosis in human neuronal SH-SY5Y cells. Eur J Med Chem 62: 187–198. doi: 10.1016/j.ejmech.2012.12.037
[58]
Hasegawa T, Bando A, Tsuchiya K, Abe S, Okamoto M, et al. (2004) Enzymatic and nonenzymatic formation of reactive oxygen species from 6-anilino-5, 8-quinolinequinone. Biochim Biophys Acta 1670: 19–27. doi: 10.1016/j.bbagen.2003.10.008
[59]
Camoratto AM, Jani JP, Angeles TS, Maroney AC, Sanders CY, et al. (1997) CEP-751 inhibits Trk receptor tyrosine kinase activity in vitro exhibits anti-tumor activity. Int J Cancer 72: 673–679. doi: 10.1002/(sici)1097-0215(19970807)72:4<673::aid-ijc20>3.3.co;2-r
[60]
Schneider CA, Rasband WS, Eliceiri KW (2012) NIH image to ImageJ: 25 years of image analysis. Nat Methods 9: 671–675. doi: 10.1038/nmeth.2089
[61]
Sims RR, Anderson MF (2008) Isolation of mitochondria from rat brain using Percoll density gradient centrifugation. Nat Protocols 3: 1228–1239. doi: 10.1038/nprot.2008.105
[62]
Starkov AA (2010) Measurement of mitochondrial ROS production. Methods Mol Biol 648: 245–255. doi: 10.1007/978-1-60761-756-3_16
[63]
Ribble D, Goldstein NB, Norris DA, Shellman YG (2005) A simple technique for quantifying apoptosis in 96-well plates. BMC Biotechnol 5: 12. doi: 10.1016/b978-0-12-405914-6.00020-2
[64]
Baskic D, Popovic S, Ristic P, Arsenijevic NN (2006) Analysis of cycloheximide-induced apoptosis in human leukocytes: fluorescence microscopy using annexin V/propidium iodide versus acridine orange/ethidium bromide. Cell Biol Int 30: 924–932. doi: 10.1016/j.cellbi.2006.06.016
[65]
Weydert CJ, Cullen JJ (2010) Measurement of superoxide dismutase, catalase and glutathione peroxidase in cultured cells and tissue. Nat Protocols 5: 51–66. doi: 10.1038/nprot.2009.197
[66]
Mahller YY, Williams JP, Baird WH, Mitton B, Grossheim J, et al. (2009) Neuroblastoma cell lines contain pluripotent tumor initiating cells that are susceptible to a targeted oncolytic virus. PLoS One 4: e4235. doi: 10.1371/journal.pone.0004235
[67]
Tanaka T, Hosoi F, Yamaguchi-Iwa Y, Nakamura H, Masutani H, et al. (2002) Thioredoxin-2 (TRX-2) is an essential gene regulating mitochondrial-dependent apoptosis. EMBO J 21: 1695–1703. doi: 10.1093/emboj/21.7.1695
[68]
Meco D, Riccardi A, Servidei T (2005) Antitumor activity of imatinib mesylate in neuroblastoma xenografts. Cancer Lett 228: 211–219. doi: 10.1016/j.canlet.2005.02.054
[69]
Melone MA, Giuliano M, Squillaro T, Alessio N, Casale F, et al. (2009) Genes involved in regulation of stem cell properties: studies on their expression in a small cohort of neuroblastoma patients. Cancer Biol Ther 8: 1300–1306. doi: 10.4161/cbt.8.13.8890
[70]
Al-Obeidi FA, Lam KI (2000) Development of inhibitors for protein tyrosine kinases. Oncogene 19: 5690–5701. doi: 10.1038/sj.onc.1203926
[71]
Kiningham KK, Cardozo ZA, Cook C, Cole MP, Stewart JC, et al. (2008) All-trans-retinoic acid induces manganese superoxide dismutase in human neuroblastoma cells through NF-kappaB. Free Radical Biol Med 44: 1610–1616. doi: 10.1016/j.freeradbiomed.2008.01.015
[72]
Drubin DG, Feinstein SC, Shooter EM, Kirschner MW (1985) Nerve growth factor-induced neurite outgrowth in PC12 cells involves the coordinate induction of microtubule assembly and assembly-promoting factors. J Cell Biol 101: 1799–807. doi: 10.1083/jcb.101.5.1799
[73]
Kuijpers M, Hoogenraad CC (2011) Centrosomes, microtubules and neuronal development. Mol Cell Neurosci 48: 349–358. doi: 10.1016/j.mcn.2011.05.004
[74]
Wang ML, Chiou SH, Wu CW (2013) Targeting cancer stem cells: emerging role of Nanog transcription factor. OncoTargets and Therapy 6: 1207–1220. doi: 10.2147/ott.s38114
[75]
Bertuzzi A, Bruni C, Fasano A, Gandolfi A, Papa F, et al. (2010) Response of tumor spheroids to radiation: modelling and parameter estimation. Bull Math Biol 72: 1069–1091. doi: 10.1007/s11538-009-9482-y
[76]
Eggert A, Grotzer MA, Ikegaki N, Liu XG, Evans AE, et al. (2002) Expression of the neurotrophin receptor TrkA down regulates expression and function of angiogenic stimulators in SH-SY5Y neuroblastoma cells. Cancer Res 62: 1802–1808. doi: 10.1158/0008-5472.can-12-0556
[77]
Pelicano H, Feng L, Zhou Y, Carew JS, Hileman EO, et al. (2003) Inhibition of mitochondrial respiration: a novel strategy to enhance drug-induced apoptosis in human leukemia cells by a reactive oxygen species-mediated mechanism. J Biol Chem 278: 37832–37839. doi: 10.1074/jbc.m301546200
[78]
Kim J, Li M, Jang J, Na H, Song N, et al. (2008) 15-deoxy-d12, 14-prostaglandin J2 rescues PC12 cells from H202-induced apoptosis through Nrf2-mediated upregulation of heme oxygenase-1: Potential roles for Akt and ERK1/2. Biochem Pharmacol 76: 1577–1589. doi: 10.1016/j.bcp.2008.08.007
[79]
Cozzi R, Ricordy R, Aglitti T, Gatta V, Perticone P, et al. (1997) Ascorbic acid and beta-carotene as modulators of oxidative damage. Carcinogenesis 18: 223–228. doi: 10.1093/carcin/18.1.223
[80]
Nicotera TM, Notaro J, Notaro S, Schumer J, Sandberg AA (1989) Elevated superoxide dismutase in Bloom’s syndrome: a genetic condition of oxidative stress. Cancer Res 49: 5239–5243.