[1] | Brown MJF, Loosli R, Schmid-Hempel P (2000) Condition-dependent expression of virulence in a trypanosome infecting bumblebees. Oikos 91: 421–427. doi: 10.1034/j.1600-0706.2000.910302.x
|
[2] | Jokela J, Taskinen J, Mutikainen P, Kopp K (2005) Virulence of parasites in hosts under environmental stress: experiments with anoxia and starvation. Oikos 108: 156–164. doi: 10.1111/j.0030-1299.2005.13185.x
|
[3] | Ebert D, Carius HJ, Little T, Decaestecker E (2004) The evolution of virulence when parasites cause host castration and gigantism. American Naturalist 164: S19–S32. doi: 10.1086/424606
|
[4] | Anderson RM, May RM (1981) The population dynamics of microparasites and their invertebrate hosts. Philosophical Transactions of the Royal Society of London Series B Biological Sciences 291: 451–524. doi: 10.1098/rstb.1981.0005
|
[5] | Lively CM (2009) The maintenance of sex: host–parasite coevolution with density-dependent virulence. Journal of Evolutionary Biology 22: 2086–2093. doi: 10.1111/j.1420-9101.2009.01824.x
|
[6] | Lively CM (2006) The ecology of virulence. Ecology Letters 9: 1089–1095. doi: 10.1111/j.1461-0248.2006.00969.x
|
[7] | Lafferty KD, Holt RD (2003) How should environmental stress affect the population dynamics of disease? Ecology Letters 6: 654–664. doi: 10.1046/j.1461-0248.2003.00480.x
|
[8] | Sheldon BC, Verhulst S (1996) Ecological immunology: Costly parasite defences and trade-offs in evolutionary ecology. Trends in Ecology & Evolution 11: 317–321. doi: 10.1016/0169-5347(96)10039-2
|
[9] | Moret Y, Schmid-Hempel P (2000) Survival for immunity: The price of immune system activation for bumblebee workers. Science 290: 1166–1168. doi: 10.1126/science.290.5494.1166
|
[10] | Sadd BM, Siva-Jothy MT (2006) Self-harm caused by an insect’s innate immunity. Proceedings of the Royal Society B: Biological Sciences 273: 2571. doi: 10.1098/rspb.2006.3574
|
[11] | Barber I, Arnott SA, Braithwaite VA, Andrew J, Huntingford FA (2001) Indirect fitness consequences of mate choice in sticklebacks: offspring of brighter males grow slowly but resist parasitic infections. Proceedings of the Royal Society B-Biological Sciences 268: 71–76. doi: 10.1098/rspb.2000.1331
|
[12] | Boots M, Begon M (1993) Trade-offs with resistance to a granulosis virus in the Indian meal moth, examined by a laboratory evolution experiment. Functional Ecology 7: 528–534. doi: 10.2307/2390128
|
[13] | Turchin P, Taylor A (1992) Complex dynamics in ecological time-series. Ecology 73: 289–305. doi: 10.2307/1938740
|
[14] | Brook B, Bradshaw C (2006) Strength of evidence for density dependence in abundance time series of 1,198 species. Ecology 87: 1445–1451. doi: 10.1890/0012-9658(2006)87[1445:soefdd]2.0.co;2
|
[15] | Bonenfant C, Gaillard JM, Coulson T, Festa-Bianchet M, Loison A, et al. (2009) Empirical evidence of density-dependence in populations of large herbivores. In: Advances in Ecological Research Caswell H, editor. 41: 313–357. doi: 10.1016/s0065-2504(09)00405-x
|
[16] | Schoebel CN, Wolinska J, Spaak P (2010) Higher parasite resistance in Daphnia populations with recent epidemics. Journal of Evolutionary Biology 23: 2370–2376. doi: 10.1111/j.1420-9101.2010.02097.x
|
[17] | Jokela J, Lively CM, Taskinen J, Peters AD (1999) Effect of starvation on parasite-induced mortality in a freshwater snail (Potamopyrgus antipodarum). Oecologia 119: 320–325. doi: 10.1007/s004420050792
|
[18] | Sepp?l? O, Jokela J (2010) Maintenance of genetic variation in immune defense of a freshwater snail: role of environmental heterogeneity. Evolution 64: 2397–2407. doi: 10.1111/j.1558-5646.2010.00995.x
|
[19] | Siva-Jothy MT, Thompson JJW (2002) Short-term nutrient deprivation affects immune function. Physiological Entomology 27: 206–212. doi: 10.1046/j.1365-3032.2002.00286.x
|
[20] | Pisek M, Karl I, Franke K, Fischer K (2013) High larval density does not induce a prophylactic immune response in a butterfly. Ecological Entomology DOI:10.1111/een.12024.
|
[21] | Neiman M (2006) Embryo production in a parthenogenetic snail (Potamopyrgus antipodarum) is negatively affected by the presence of other parthenogenetic females. Invertebrate Biology 125: 45–50. doi: 10.1111/j.1744-7410.2006.00038.x
|
[22] | Seiz A (1984) Are there allelopathic interactions in zooplankton? Laboratory experiments with Daphnia.. Oecologia 62: 94–96. doi: 10.1007/bf00377380
|
[23] | Cope NJ, Winterbourn MJ (2004) Competitive interactions between two successful molluscan invaders of freshwaters: an experimental study. Aquatic Ecology 38: 83–91. doi: 10.1023/b:aeco.0000021018.20945.9d
|
[24] | Boersma M, Spaak P, De Meester L (1998) Predator-mediated plasticity in morphology, life history, and behavior of Daphnia: The uncoupling of responses. American Naturalist 152: 237–248. doi: 10.1086/286164
|
[25] | Ebert D, Rainey P, Embley TM, Scholz D (1996) Development, life cycle, ultrastructure and phylogenetic position of Pasteuria ramosa Metchnikoff 1888: rediscovery of an obligate endoparasite of Daphnia magna Straus. Philosophical Transactions of the Royal Society of London Series B Biological Sciences 351: 1689–1701. doi: 10.1098/rstb.1996.0151
|
[26] | Carius HJ, Little TJ, Ebert D (2001) Genetic variation in a host-parasite association: Potential for coevolution and frequency-dependent selection. Evolution 55: 1136–1145. doi: 10.1554/0014-3820(2001)055[1136:gviahp]2.0.co;2
|
[27] | Auld SKJR, Scholefield JA, Little TJ (2010) Genetic variation in the cellular response of Daphnia magna (Crustacea: Cladocera) to its bacterial parasite. Proceedings of the Royal Society B-Biological Sciences 277: 3291–3297. doi: 10.1098/rspb.2010.0772
|
[28] | Auld SKJR, Edel KH, Little TJ (2012) The cellular immune response of Daphnia magna under host-parasite genetic variation and variation in initial dose. Evolution 66: 3287–3293. doi: 10.1111/j.1558-5646.2012.01671.x
|
[29] | Klüttgen B, Dulmer U, Engels M, Ratte HT (1994) Adam, an artificial freshwater for the culture of zooplankton. Water Research 28: 743–746. doi: 10.1016/0043-1354(94)90157-0
|
[30] | Vale PF, Wilson AJ, Best A, Boots M, Little TJ (2011) Epidemiological, evolutionary, and coevolutionary implications of context-dependent parasitism. American Naturalist 177: 510–521. doi: 10.1086/659002
|
[31] | Ebert D, Zschokke Rohringer CD, Carius HJ (2000) Dose effects and density-dependent regulation of two microparasites of Daphnia magna. Oecologia 122: 200–209. doi: 10.1007/pl00008847
|
[32] | Lavine MD, Strand MR (2002) Insect hemocytes and their role in immunity. Insect Biochemistry and Molecular Biology 32: 1295–1309. doi: 10.1016/s0965-1748(02)00092-9
|
[33] | Lazzaro BP, Little TJ (2009) Immunity in a variable world. Philosophical Transactions of the Royal Society B: Biological Sciences 364: 15–26. doi: 10.1098/rstb.2008.0141
|
[34] | Wolinska J, King KC (2009) Environment can alter selection in host-parasite interactions. Trends in Parasitology 25: 236–244. doi: 10.1016/j.pt.2009.02.004
|
[35] | Lively CM (2010) Parasite viruleeecne, host life history, and the costs and enefits of sex. Ecology 91: 3–6. doi: 10.1890/09-1158.1
|
[36] | Stjernman M, Little TJ (2011) Genetic variation for maternal effects on parasite susceptibility. Journal of Evolutionary Biology 24: 2357–2363. doi: 10.1111/j.1420-9101.2011.02363.x
|
[37] | Guinnee MA, West SA, Little TJ (2004) Testing small clutch size models with Daphnia. American Naturalist 163: 880–887. doi: 10.1086/386553
|
[38] | Mitchell SE, Read AF (2005) Poor maternal environment enhances offspring disease resistance in an invertebrate. Proceedings of the Royal Society B-Biological Sciences 272: 2601–2607. doi: 10.1098/rspb.2005.3253
|
[39] | Guinnee MA, Gardner A, Howard AE, West SA, Little TJ (2007) The causes and consequences of variation in offspring size: a case study using Daphnia. Journal of Evolutionary Biology 20: 577–587. doi: 10.1111/j.1420-9101.2006.01253.x
|
[40] | Little TJ, Chadwick W, Watt K (2007) Parasite variation and the evolution of virulence in a Daphnia-microparasite system. Parasitology 135: 303–308. doi: 10.1017/s0031182007003939
|
[41] | Rowley AF, Ratclife NA (1981) Invertebrate blood cells. London: Academic Press.
|
[42] | Strand MR (2008) The insect cellular immune response. Insect Science 15: 1–14. doi: 10.1111/j.1744-7917.2008.00183.x
|
[43] | Neiman M, Warren D, Rasmussen B, Zhang S (2013) Complex consequences of increased density for reproductive output in an invasive freshwater snail. Evolutionary Ecology Doi:10.1007/s10682-013-9632-4.
|
[44] | Burns CW (1995) Effects of crowding and different food levels on growth and reproductive investment of Daphnia. Oecologia 101: 234–244. doi: 10.1007/bf00317289
|
[45] | Duncan AB, Little TJ (2007) Parasite-driven genetic change in a natural population of Daphnia. Evolution 61: 796–803. doi: 10.1111/j.1558-5646.2007.00072.x
|