The chicken has long served as an important model organism in many fields, and continues to aid our understanding of animal development. Functional genomics studies aimed at probing the mechanisms that regulate development require high-quality genomes and transcript annotations. The quality of these resources has improved dramatically over the last several years, but many isoforms and genes have yet to be identified. We hope to contribute to the process of improving these resources with the data presented here: a set of long cDNA sequencing reads, and a curated set of new genes and transcript isoforms not currently represented in the most up-to-date genome annotation currently available to the community of researchers who rely on the chicken genome.
References
[1]
Lander ES, Linton LM, Birren B, Nusbaum C, Zody MC, et al. (2001) Initial sequencing and analysis of the human genome. Nature 409: 860–921 doi:10.1038/35057062.
[2]
Venter JC, Adams MD, Myers EW, Li PW, Mural RJ, et al. (2001) The sequence of the human genome. Science 291: 1304–1351 doi:10.1126/science.1058040.
[3]
Chinwalla AT, Cook LL, Delehaunty KD, Fewell GA, Fulton LA, et al. (2002) Initial sequencing and comparative analysis of the mouse genome. Nature 420: 520–562 doi:10.1038/nature01262.
[4]
Adams MD, Celniker SE, Holt RA, Evans CA, Gocayne JD, et al. (2000) The genome sequence of Drosophila melanogaster. Science 287: 2185–2195. doi: 10.1126/science.287.5461.2185
[5]
C. elegans Sequencing Consortium (1998) Genome sequence of the nematode C. elegans: a platform for investigating biology. Science 282: 2012–2018. doi: 10.1126/science.282.5396.2012
[6]
ENCODE Project Consortium (2012) Bernstein BE, Birney E, Dunham I, Green ED, et al. (2012) An integrated encyclopedia of DNA elements in the human genome. Nature 489: 57–74 doi:10.1038/nature11247.
[7]
Mouse ENCODE Consortium, Stamatoyannopoulos JA, Snyder M, Hardison R, Ren B, et al. (2012) An encyclopedia of mouse DNA elements (Mouse ENCODE). Genome Biol 13: 418 doi:10.1186/gb-2012-13-8-418.
[8]
modENCODE Consortium (2010) Roy S, Ernst J, Kharchenko PV, Kheradpour P, et al. (2010) Identification of functional elements and regulatory circuits by Drosophila modENCODE. Science 330: 1787–1797 doi:10.1126/science.1198374.
[9]
Gerstein MB, Lu ZJ, Van Nostrand EL, Cheng C, Arshinoff BI, et al. (2010) Integrative analysis of the Caenorhabditis elegans genome by the modENCODE project. Science 330: 1775–1787 doi:10.1126/science.1196914.
[10]
Kent WJ, Sugnet CW, Furey TS, Roskin KM, Pringle TH, et al. (2002) The human genome browser at UCSC. Genome Res 12: 996–1006 doi:10.1101/gr.229102. Article published online before print in May 2002.
[11]
International Chicken Genome Sequencing Consortium (2004) Sequence and comparative analysis of the chicken genome provide unique perspectives on vertebrate evolution. Nature 432: 695–716 doi:10.1038/nature03154.
[12]
Pruitt KD, Tatusova T, Maglott DR (2007) NCBI reference sequences (RefSeq): a curated non-redundant sequence database of genomes, transcripts and proteins. Nucleic Acids Res 35: D61–65 doi:10.1093/nar/gkl842.
[13]
Curwen V, Eyras E, Andrews TD, Clarke L, Mongin E, et al. (2004) The Ensembl automatic gene annotation system. Genome Res 14: 942–950 doi:10.1101/gr.1858004.
[14]
Potter SC, Clarke L, Curwen V, Keenan S, Mongin E, et al. (2004) The Ensembl analysis pipeline. Genome Res 14: 934–941 doi:10.1101/gr.1859804.
[15]
Brawand D, Soumillon M, Necsulea A, Julien P, Csárdi G, et al. (2011) The evolution of gene expression levels in mammalian organs. Nature 478: 343–348 doi:10.1038/nature10532.
[16]
Chinwalla AT, Cook LL, Delehaunty KD, Fewell GA, Fulton LA, et al. (2002) Initial sequencing and comparative analysis of the mouse genome. Nature 420: 520–562 doi:10.1038/nature01262.
[17]
Burt DW (2007) Emergence of the chicken as a model organism: implications for agriculture and biology. Poult Sci 86: 1460–1471. doi: 10.1093/ps/86.7.1460
[18]
Bao ZZ, Bruneau BG, Seidman JG, Seidman CE, Cepko CL (1999) Regulation of chamber-specific gene expression in the developing heart by Irx4. Science 283: 1161–1164. doi: 10.1126/science.283.5405.1161
[19]
Kim D, Pertea G, Trapnell C, Pimentel H, Kelley R, et al. (2013) TopHat2: accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions. Genome Biol 14: R36 doi:10.1186/gb-2013-14-4-r36.
[20]
Haas BJ, Papanicolaou A, Yassour M, Grabherr M, Blood PD, et al. (2013) De novo transcript sequence reconstruction from RNA-seq using the Trinity platform for reference generation and analysis. Nat Protoc 8: 1494–1512 doi:10.1038/nprot.2013.084.
[21]
Wu TD, Watanabe CK (2005) GMAP: a genomic mapping and alignment program for mRNA and EST sequences. Bioinforma Oxf Engl 21: 1859–1875 doi:10.1093/bioinformatics/bti310.
[22]
Hubbard SJ, Grafham DV, Beattie KJ, Overton IM, McLaren SR, et al. (2005) Transcriptome analysis for the chicken based on 19,626 finished cDNA sequences and 485,337 expressed sequence tags. Genome Res 15: 174–183 doi:10.1101/gr.3011405.
[23]
Semina EV, Brownell I, Mintz-Hittner HA, Murray JC, Jamrich M (2001) Mutations in the human forkhead transcription factor FOXE3 associated with anterior segment ocular dysgenesis and cataracts. Hum Mol Genet 10: 231–236. doi: 10.1093/hmg/10.3.231
[24]
Anand S, Majeti BK, Acevedo LM, Murphy EA, Mukthavaram R, et al. (2010) MicroRNA-132-mediated loss of p120RasGAP activates the endothelium to facilitate pathological angiogenesis. Nat Med 16: 909–914 doi:10.1038/nm.2186.