Comparison of Efficacy of the Disease-Specific LOX1- and Constitutive Cytomegalovirus-Promoters in Expressing Interleukin 10 through Adeno-Associated Virus 2/8 Delivery in Atherosclerotic Mice
The development of gene therapy vectors for treating diseases of the cardiovascular system continues at a steady pace. Moreover, in the field of gene therapy the utility of “disease-specific promoters” has strong appeal. Many therapeutic genes, including transforming growth factor beta 1 or interleukin 10, are associated to adverse effects. The use of a disease-specific promoter might minimize toxicity. The lectin-like oxidized low density lipoprotein receptor 1 is a marker of cardiovascular disease and a potential therapeutic target. The lectin-like oxidized low density lipoprotein receptor 1 is known to be up-regulated early during disease onset in a number of cell types at the sites where the disease will be clinically evident. In this study an adeno-associated virus-2 DNA vector (AAV2) using the AAV8 capsid, and containing the full length The lectin-like oxidized low density lipoprotein receptor 1 promoter, was generated and assayed for its ability to express human interleukin 10 in low density lipoprotein receptor knockout mice on high cholesterol diet. The cytomegalovirus early promoter was used for comparison in a similarly structured vector. The two promoters were found to have equal efficacy in reducing atherogenesis as measured by aortic systolic blood velocity, aortic cross sectional area, and aortic wall thickness. This is the first head-to-head comparison of a constitutive with a disease-specific promoter in a therapeutic context. These data strongly suggest that the use of a disease-specific promoter is appropriate for therapeutic gene delivery.
References
[1]
Libby P, Ridker PM, Maseri A (2002) Inflammation and Atherosclerosis. Circulation. 105: 1135–1143. doi: 10.1161/hc0902.104353
Ludewig B, Laman JD (2004) The in and out of monocytes in atherosclerotic plaques: Balancing inflammation through migration. Proc Natl Acad Sci U S A. 101: 11529–11530. doi: 10.1073/pnas.0404612101
[4]
Woollard KJ, Geissmann F (2010) Monocytes in atherosclerosis: subsets and functions. Nat Rev Cardiol. 7: 77–86. doi: 10.1038/nrcardio.2009.228
[5]
Letterio JJ, Roberts AB (1998) Regulation of immune responses by TGF-beta. Annu Rev Immunol 16: 137–161. doi: 10.1146/annurev.immunol.16.1.137
[6]
de Vries JE (1995) Immunosuppressive and anti-inflammatory properties of interleukin 10. Ann Med. 27: 537–41. doi: 10.3109/07853899509002465
[7]
Byfield SD, Roberts AB (2004) Lateral signaling enhances TGF-beta response complexity. Trends Cell Biol 14: 107–111. doi: 10.1016/j.tcb.2004.01.001
[8]
Attisano L, Wrana JL (2002) Signal Transduction by the TGF-beta Superfamily. Science 296: 1646–1647. doi: 10.1126/science.1071809
[9]
Kopp JB, Factor VM, Mozes M, Nagy P, Sanderson N, et al. (1996) Transgenic mice with increased plasma levels of TGF-beta 1 develop progressive renal disease. Lab Invest 74: 991–1003.
[10]
Gressner AM, Weiskirchen R, Breitkopf K, Dooley S (2002) Roles of TGF-beta in hepatic fibrosis. Front Biosci 7: 793–807. doi: 10.2741/gressner
[11]
Filippi CM, von Herrath MG (2008) IL-10 and the resolution of infections. High levels of IL10 are associated with increased viral, bacterial, and fungal infections, as well as cancer. J Pathol 214: 224–230. doi: 10.1002/path.2272
[12]
Zobel K, Martus P, Pletz MW, Ewig S, Prediger M, et al. (2012) Interleukin 6, lipopolysaccharide-binding protein and interleukin 10 in the prediction of risk and etiologic patterns in patients with community-acquired pneumonia: results from the German competence network CAPNETZ. BMC Pulmonary Medicine. 12: 6. doi: 10.1186/1471-2466-12-6
[13]
Clemons KV, Grunig G, Sobel RA, Mirels LF, Rennick DM, et al. (2000) Role of IL-10 in invasive aspergillosis: increased resistance of IL-10 gene knockout mice to lethal systemic aspergillosis. Clin Exper Imm 122: 186–91. doi: 10.1046/j.1365-2249.2000.01382.x
[14]
Brooks DG, Lee AM, Elsaesser H, McGavern DB, Oldstone MB (2008) IL-10 blockade facilitates DNA vaccine-induced T cell responses and enhances clearance of persistent virus infection. J Exp Med 205: 533–541. doi: 10.1084/jem.20071948
[15]
Brooks DG, Trifilo MJ, Edelmann KH, Teyton L, McGavern DB, et al. (2006) Interleukin-10 determines viral clearance or persistence in vivo. Nat Med 12: 1301–1309. doi: 10.1038/nm1492
[16]
Ejrnaes M, Filippi CM, Martinic MM, Ling EM, Togher LM, et al. (2006) Resolution of a chronic viral infection after interleukin-10 receptor blockade. J Exp Med 203: 2461–2472. doi: 10.1084/jem.20061462
[17]
Zeni E, Mazzetti L, Miotto D, Lo Cascio N, Maestrelli P, et al. (2007) Macrophage expression of interleukin-10 is a prognostic factoir in nonsmall cell lung cancer. Eur Respir J 30: 627–632. doi: 10.1183/09031936.00129306
[18]
Maris CH, Chappell CP, Jacob J (2007) Interleukin-10 plays an early role in generating virus-specific T cell anergy. BMC Immunol 8: 8. doi: 10.1186/1471-2172-8-8
[19]
Herfarth H, Sch?lmerich J (2002) IL-10 therapy in Crohn’s disease: at the crossroads Gut. 50: 146–147. doi: 10.1136/gut.50.2.146
[20]
Asadullah K, Sterry W, Volk HD (2003) Interleukin-10 Therapy–Review of a New Approach Pharmacological Reviews. 55: 241–269. doi: 10.1124/pr.55.2.4
[21]
Hermonat PL, Muzyczka N (1984) Use of adeno-associated virus as a mammalian DNA cloning vector: transduction of neomycin resistance into mammalian tissue culture cells. Proc Natl Acad Sci USA 81: 6466–6470. doi: 10.1073/pnas.81.20.6466
[22]
Tratschin JD, West MH, Sandbank T, Carter BJ (1984) A human parvovirus, adeno-associated virus, as a eukaryotic vector: transient expression and encapsidation of the prokaryotic gene for chloramphenicol acetyltransferase, Mol Cell Biol. 4: 2072–2081.
[23]
Hermonat PL, Labow MA, Wright R, Berns KI, Muzyczka N (1984) Genetics of adeno-associated virus: isolation and preliminary characterization of mutants in adeno-associated virus type 2. J Virol 51: 329–339.
[24]
Liu Y, Chiriva-Internati M, Grizzi F, Salati E, Roman JJ, et al. (2001) Rapid induction of cytotoxic T cell response against cervical cancer cells by human papillomavirus type 16 E6 antigen gene delivery into human dendritic cells by an adeno-associated virus vector. Can Gene Ther 8: 948–957. doi: 10.1038/sj.cgt.7700391
[25]
Chiriva-Internati M, Liu Y, Weidanz JA, Grizzi F, You H, et al. (2003) Testing recombinant adeno-associated virus-gene loading of dendritic cells for generating potent cytotoxic T lymphocytes against a prototype self-antigen, multiple myeloma HM1.24. Blood. 102: 3100–3107. doi: 10.1182/blood-2002-11-3580
[26]
You CX, Shi M, Liu Y, Cao M, Luo RC, et al. (2012) AAV2/IL-12 gene delivery into dendritic cells (DC) enhances CTL stimulation above other IL-12 applications: evidence for IL-12 intracrine activity in DC. Oncoimm 2012 1: 847–855. doi: 10.4161/onci.20504
[27]
Liu Y, Li D, Chen J, Xie J, Bandyopadhyay S, et al. (2006) Inhibition of atherogenesis in LDLR knockout mice by systemic delivery of adeno-associated virus type 2-hIL-10. Atherosclerosis 188: 19–27. doi: 10.1016/j.atherosclerosis.2005.10.029
[28]
Chen S, Kapturczak MH, Wasserfall C, Glushakova OY, Campbell-Thompson M, et al. (2006) Interleukin 10 attenuates neointimal proliferation and inflammation in aortic allografts by a heme oxygenase-dependent pathway. Proc Natl Acad Sci 102: 7251–7256. doi: 10.1073/pnas.0502407102
[29]
Yoshioka T, Okada T, Maeda Y, Ikeda U, Shimpo M, et al. (2004) Adeno-associated virus vector-mediated interleukin-10 gene transfer inhibits atherosclerosis in apolipoprotein E-deficient mice. Gene Therapy 11: 1772–1779. doi: 10.1038/sj.gt.3302348
[30]
Jiang H, Pierce GF, Ozelo MC, de Paula EV, Vargas JA, et al. (2006) Evidence of multiyear factor IX expression by AAV-mediated gene transfer to skeletal muscle in an individual with severe hemophilia B. Molec Ther. 24: 452–455. doi: 10.1016/j.ymthe.2006.05.004
[31]
Wettergren EE, Gussing F, Quintino L, Lundberg C (2012) Novel disease-specific promoters for use in gene therapy for Parkinson’s disease. Neurosci Lett 530: 29–34. doi: 10.1016/j.neulet.2012.09.059
[32]
Kim HA, Mahato RI, Lee M (2009) Hypoxia-specific gene expression for ischemic disease gene therapy Adv Drug Del Rev. 61: 614–622. doi: 10.1016/j.addr.2009.04.009
[33]
Sawamura T, Kume N, Aoyama T, Morlaki H, Hoshikawa H, et al. (1997) An endothelial receptor for oxidized low-density lipoprotein. Nature 386: 73–77. doi: 10.1038/386073a0
[34]
Oka K, Sawamura T, Kikuta K, Itokawa S, Kume N, et al. (1998) Lectin-like oxidized low density lipoprotein receptor 1 mediates phagocytosis of aged/apoptotic cells in endothelial cells. Proc Natl Acad Sci USA 95: 9535–9540. doi: 10.1073/pnas.95.16.9535
[35]
Mehta JL, Li D (1998) Identification and autoregulation of receptor for OX-LDL in cultured human coronary artery endothelial cells. Biochem Biophys Res Commun 248: 511–514. doi: 10.1006/bbrc.1998.9004
[36]
Kakutani M, Masaki T, Sawamura T (2000) A platelet-endothelium interaction mediated by lectin-like oxidized low-density lipoprotein receptor-1. Proc Natl Acad Sci USA. 97: 360–364. doi: 10.1073/pnas.97.1.360
[37]
Ogura S, Kakino A, Sato Y, Fujita Y, Iwamoto S, et al. (2009) LOX-1: the multifunctional receptor underlying cardiovascular dysfunction. Circ J 73: 1993–1999. doi: 10.1253/circj.cj-09-0587
[38]
Aoyama T, Sawamura T, Furutani Y, Matsuoka R, Yoshida MC, et al. (1999) Structure and chromosomal assignment of the human lectin-like oxidized low-density-lipoprotein receptor-1 (LOX-1) gene. Biochem J. 339: 177–184. doi: 10.1042/0264-6021:3390177
[39]
Chen J, Liu Y, Liu H, Hermonat PL, Mehta JL (2006) Lectin-like oxidized low-density lipoprotein receptor-1 (LOX-1) transcriptional regulation by Oct-1 in human endothelial cells: implications for atherosclerosis. Biochemical J 393: 255–265. doi: 10.1042/bj20050845
[40]
Chen J, Liu Y, Liu H, Hermonat PL, Mehta JL (2006) Molecular dissection of angiotensin II-activated human LOX-1 promoter. Arterioscler Thromb Vasc Biol. 26: 1163–1168. doi: 10.1161/01.atv.0000209998.73303.b5
[41]
Khan JA, Cao M, Kang BY, Liu Y, Mehta JL, et al. (2010) Systemic hNetrin-1 gene delivery lowers monocyte/macrophage accumulation and atherogenesis in vivo. Gene Therapy 18: 437–444. doi: 10.1038/gt.2010.155
[42]
Qin JY, Zhang L, Clift KL, Hulur I, Xiang AP, et al. (2010) Systematic comparison of constitutive promoters and the doxycyline-inducible promoter. PLOSone 5: e10611. doi: 10.1371/journal.pone.0010611
[43]
Zarrin AA, Malkin L, Fong I, Luk KD, Ghose A, et al. (1999) Comparison of CMV, RSV, SV40 viral and V lambda 1 cellular promoters in B and T lymphoid and non-lymphoid cell lines. Biochim Biophys Acta 1446: 135–139. doi: 10.1016/s0167-4781(99)00067-6
[44]
Hermonat PL, Zhu H, Cao M, Mehta JL (2011) LOX-1 transcription. Cardiovasc Drugs Therapy. 25: 393–400. doi: 10.1007/s10557-011-6322-8
[45]
Brea A, Mosquera D, Martin E, Arizti A, Cordero JL, et al. (2005) Nonalcoholic fatty liver disease is associated with carotid atherosclerosis: a case– control study. Arterioscler Thromb Vasc Biol 25: 1045–1050. doi: 10.1016/s1567-5688(04)90209-2
[46]
Grimm D, Pandey K, Nakai H, Storm TA, Kay MA (2006) Liver transduction with recombinant adeno-associated virus is primarily restricted by capsid serotype not vector genotype. J Virol 80: 426–439. doi: 10.1128/jvi.80.1.426-439.2006
[47]
Denby L, Nicklin SA, Baker AH (2005) Adeno-associated virus (AAV)-7 and -8 poorly transduce vascular endothelial cells and are sensitive to proteasomal degradation. Gene Ther 12: 1534–1538. doi: 10.1038/sj.gt.3302564
[48]
Faber BC, Cleutjens KB, Niessen RL, Aarts PL, Boon W, et al. (2001) Identification of genes potentially involved in rupture of human atherosclerotic plaques. Circ Res 89: 547–554. doi: 10.1161/hh1801.096340
[49]
Armstrong PJ, Johanning JM, Calton Jr WC, Delatore JR, Franklin DP, et al. (2002) Differential gene expression in human abdominal aorta: aneurysmal versus occlusive disease. J Vasc Surg 35: 346–355. doi: 10.1067/mva.2002.121071
[50]
Hiltunen MO, Tuomisto TT, Niemi M, Brasen JH, Rissanen TT, et al. (2002) Changes in gene expression in atherosclerotic plaques analyzed using DNA array. Atherosclerosis 165: 23–32. doi: 10.1016/s0021-9150(02)00187-9
[51]
Martinet W, Schrijvers DM, De Meyer GR, Thielemans J, Knaapen MW, et al. (2002) Gene expression profiling of apoptosis-related genes in human atherosclerosis: upregulation of death-associated protein kinase. Arterioscler Thromb Vasc Biol 22: 2023–2029. doi: 10.1161/01.atv.0000041843.44312.12
[52]
Woodside KJ, Hernandez A, Smith FW, Xue XY, Hu M, et al. (2003) Differential gene expression in primary and recurrent carotid stenosis. Biochem Biophys Res Commun 302: 509–514. doi: 10.1016/s0006-291x(03)00191-8
[53]
Stary HC (2000) Natural History and Histological Classification of Atherosclerotic Lesions: An Update Arterioscler Thromb Vasc Biol. 20: 1177–1178. doi: 10.1161/01.atv.20.5.1177
[54]
Stone GW, Maehara A, Lansky AJ, de Bruyne B, Cristea E, et al. (2011) A prospective natural-history study of coronary atherosclerosis. N Engl J Med 364: 226–235. doi: 10.1056/nejmoa1002358
[55]
Robbins CS, Hilgendorf I, Weber GF, Theurl I, IwamotoY, et al (2013) Local proliferation dominates lesional macrophage accumulation in atherosclerosis. Nat Med 19: 1166–1172. doi: 10.1038/nm.3258
[56]
O’Farrell AM, Liu Y, Moore KW, Mui AL (1998) IL-10 inhibits macrophage activation and proliferation by distinct signaling mechanisms: evidence for Stat3-dependent and -independent pathways. EMBO J 17: 1006–18. doi: 10.1093/emboj/17.4.1006
[57]
Khan JA, Cao M, Kang BY, Mehta JL, Hermonat PL (2010) AAV/hSTAT3-gene delivery lowers aortic inflammatory cell infiltration in LDLR KO mice on high cholesterol diet. Atherosclerosis 213: 59–66. doi: 10.1016/j.atherosclerosis.2010.07.029
[58]
Cao M, Khan JA, Kang BY, Mehta JL, Hermonat PL (2012) Dual AAV/IL-10 plus STAT3 anti-inflammatory gene delivery lowers atherosclerosis in LDLR KO mice, but without increased benefit. Int J Vasc Med. 2012: 524235. doi: 10.1155/2012/524235