[1] | Heim C, Nemeroff CB (2001) The role of childhood trauma in the neurobiology of mood and anxiety disorders: preclinical and clinical studies. Biol Psychiatry 49: 1023–1039. doi: 10.1016/s0006-3223(01)01157-x
|
[2] | Pechtel P, Pizzagalli DA (2011) Effects of early life stress on cognitive and affective function: an integrated review of human literature. Psychopharmacology (Berl) 214: 55–70. doi: 10.1007/s00213-010-2009-2
|
[3] | van der Kolk BA (2003) The neurobiology of childhood trauma and abuse. Child Adolesc Psychiatr Clin N Am 12: 293–317, ix.
|
[4] | Paus T, Keshavan M, Giedd JN (2008) Why do many psychiatric disorders emerge during adolescence? Nat Rev Neurosci 9: 947–957. doi: 10.1038/nrn2513
|
[5] | Young EA, Abelson JL, Curtis GC, Nesse RM (1997) Childhood adversity and vulnerability to mood and anxiety disorders. Depress Anxiety 5: 66–72. doi: 10.1002/(sici)1520-6394(1997)5:2<66::aid-da2>3.3.co;2-x
|
[6] | Andersen SL, Teicher MH (2008) Stress, sensitive periods and maturational events in adolescent depression. Trends Neurosci 31: 183–191. doi: 10.1016/j.tins.2008.01.004
|
[7] | Conti G, Hansman C, Heckman JJ, Novak MF, Ruggiero A, et al. (2012) Primate evidence on the late health effects of early-life adversity. Proc Natl Acad Sci U S A 109: 8866–8871. doi: 10.1073/pnas.1205340109
|
[8] | Corcoran CA, Pierre PJ, Haddad T, Bice C, Suomi SJ, et al. (2012) Long-term effects of differential early rearing in rhesus macaques: behavioral reactivity in adulthood. Dev Psychobiol 54: 546–555. doi: 10.1002/dev.20613
|
[9] | Marquez C, Poirier GL, Cordero MI, Larsen MH, Groner A, et al. (2013) Peripuberty stress leads to abnormal aggression, altered amygdala and orbitofrontal reactivity and increased prefrontal MAOA gene expression. Transl Psychiatry 3: e216. doi: 10.1038/tp.2012.144
|
[10] | Toledo-Rodriguez M, Sandi C (2011) Stress during Adolescence Increases Novelty Seeking and Risk-Taking Behavior in Male and Female Rats. Front Behav Neurosci 5: 17. doi: 10.3389/fnbeh.2011.00017
|
[11] | Jacobson-Pick S, Richter-Levin G (2010) Differential impact of juvenile stress and corticosterone in juvenility and in adulthood, in male and female rats. Behav Brain Res 214: 268–276. doi: 10.1016/j.bbr.2010.05.036
|
[12] | Rauch SL, Shin LM, Phelps EA (2006) Neurocircuitry models of posttraumatic stress disorder and extinction: human neuroimaging research–past, present, and future. Biol Psychiatry 60: 376–382. doi: 10.1016/j.biopsych.2006.06.004
|
[13] | Rauch SL, Shin LM, Wright CI (2003) Neuroimaging studies of amygdala function in anxiety disorders. Ann N Y Acad Sci 985: 389–410. doi: 10.1111/j.1749-6632.2003.tb07096.x
|
[14] | Etkin A, Wager TD (2007) Functional neuroimaging of anxiety: a meta-analysis of emotional processing in PTSD, social anxiety disorder, and specific phobia. Am J Psychiatry 164: 1476–1488. doi: 10.1176/appi.ajp.2007.07030504
|
[15] | Kim MJ, Loucks RA, Palmer AL, Brown AC, Solomon KM, et al. (2011) The structural and functional connectivity of the amygdala: from normal emotion to pathological anxiety. Behav Brain Res 223: 403–410. doi: 10.1016/j.bbr.2011.04.025
|
[16] | Hariri AR, Whalen PJ (2011) The amygdala: inside and out. F1000 Biol Rep 3: 2. doi: 10.3410/b3-2
|
[17] | Sandi C, Richter-Levin G (2009) From high anxiety trait to depression: a neurocognitive hypothesis. Trends Neurosci 32: 312–320. doi: 10.1016/j.tins.2009.02.004
|
[18] | Miskovic V, Schmidt LA (2012) Social fearfulness in the human brain. Neurosci Biobehav Rev 36: 459–478. doi: 10.1016/j.neubiorev.2011.08.002
|
[19] | Shin LM, Liberzon I (2010) The neurocircuitry of fear, stress, and anxiety disorders. Neuropsychopharmacology 35: 169–191. doi: 10.1038/npp.2009.83
|
[20] | Vermetten E, Schmahl C, Southwick SM, Bremner JD (2007) Positron tomographic emission study of olfactory induced emotional recall in veterans with and without combat-related posttraumatic stress disorder. Psychopharmacol Bull 40: 8–30.
|
[21] | Driessen M, Beblo T, Mertens M, Piefke M, Rullkoetter N, et al. (2004) Posttraumatic stress disorder and fMRI activation patterns of traumatic memory in patients with borderline personality disorder. Biol Psychiatry 55: 603–611. doi: 10.1016/j.biopsych.2003.08.018
|
[22] | Liberzon I, Abelson JL, Flagel SB, Raz J, Young EA (1999) Neuroendocrine and psychophysiologic responses in PTSD: a symptom provocation study. Neuropsychopharmacology 21: 40–50. doi: 10.1016/s0893-133x(98)00128-6
|
[23] | Chung YA, Kim SH, Chung SK, Chae JH, Yang DW, et al. (2006) Alterations in cerebral perfusion in posttraumatic stress disorder patients without re-exposure to accident-related stimuli. Clin Neurophysiol 117: 637–642. doi: 10.1016/j.clinph.2005.10.020
|
[24] | Bryant RA, Felmingham KL, Kemp AH, Barton M, Peduto AS, et al. (2005) Neural networks of information processing in posttraumatic stress disorder: a functional magnetic resonance imaging study. Biol Psychiatry 58: 111–118. doi: 10.1016/j.biopsych.2005.03.021
|
[25] | Shin LM, Shin PS, Heckers S, Krangel TS, Macklin ML, et al. (2004) Hippocampal function in posttraumatic stress disorder. Hippocampus 14: 292–300. doi: 10.1002/hipo.10183
|
[26] | Nemeroff CB (2003) The role of GABA in the pathophysiology and treatment of anxiety disorders. Psychopharmacol Bull 37: 133–146.
|
[27] | Lydiard RB (2003) The role of GABA in anxiety disorders. J Clin Psychiatry 64 Suppl 321–27.
|
[28] | Hettema JM, Kettenmann B, Ahluwalia V, McCarthy C, Kates WR, et al. (2012) Pilot multimodal twin imaging study of generalized anxiety disorder. Depress Anxiety 29: 202–209. doi: 10.1002/da.20901
|
[29] | Geuze E, van Berckel BN, Lammertsma AA, Boellaard R, de Kloet CS, et al. (2008) Reduced GABAA benzodiazepine receptor binding in veterans with post-traumatic stress disorder. Mol Psychiatry 13: 74–83, 73.
|
[30] | Lindefors N (1993) Dopaminergic regulation of glutamic acid decarboxylase mRNA expression and GABA release in the striatum: a review. Prog Neuropsychopharmacol Biol Psychiatry 17: 887–903. doi: 10.1016/0278-5846(93)90018-n
|
[31] | Erlander MG, Tillakaratne NJ, Feldblum S, Patel N, Tobin AJ (1991) Two genes encode distinct glutamate decarboxylases. Neuron 7: 91–100. doi: 10.1016/0896-6273(91)90077-d
|
[32] | Soghomonian JJ, Martin DL (1998) Two isoforms of glutamate decarboxylase: why? Trends Pharmacol Sci 19: 500–505. doi: 10.1016/s0165-6147(98)01270-x
|
[33] | Fatemi SH, Halt AR, Stary JM, Kanodia R, Schulz SC, et al. (2002) Glutamic acid decarboxylase 65 and 67 kDa proteins are reduced in autistic parietal and cerebellar cortices. Biol Psychiatry 52: 805–810. doi: 10.1016/s0006-3223(02)01430-0
|
[34] | Fatemi SH, Stary JM, Earle JA, Araghi-Niknam M, Eagan E (2005) GABAergic dysfunction in schizophrenia and mood disorders as reflected by decreased levels of glutamic acid decarboxylase 65 and 67 kDa and Reelin proteins in cerebellum. Schizophr Res 72: 109–122. doi: 10.1016/j.schres.2004.02.017
|
[35] | Sibille E, Morris HM, Kota RS, Lewis DA (2011) GABA-related transcripts in the dorsolateral prefrontal cortex in mood disorders. Int J Neuropsychopharmacol 14: 721–734. doi: 10.1017/s1461145710001616
|
[36] | Smith KS, Engin E, Meloni EG, Rudolph U (2012) Benzodiazepine-induced anxiolysis and reduction of conditioned fear are mediated by distinct GABAA receptor subtypes in mice. Neuropharmacology 63: 250–258. doi: 10.1016/j.neuropharm.2012.03.001
|
[37] | Smith KS, Meloni EG, Myers KM, Van’t Veer A, Carlezon WA Jr, et al. (2011) Reduction of fear-potentiated startle by benzodiazepines in C57BL/6J mice. Psychopharmacology (Berl) 213: 697–706. doi: 10.1007/s00213-010-2026-1
|
[38] | Cole BJ, Hillmann M, Seidelmann D, Klewer M, Jones GH (1995) Effects of benzodiazepine receptor partial inverse agonists in the elevated plus maze test of anxiety in the rat. Psychopharmacology (Berl) 121: 118–126. doi: 10.1007/bf02245598
|
[39] | Albrechet-Souza L, Borelli KG, Carvalho MC, Brandao ML (2009) The anterior cingulate cortex is a target structure for the anxiolytic-like effects of benzodiazepines assessed by repeated exposure to the elevated plus maze and Fos immunoreactivity. Neuroscience 164: 387–397. doi: 10.1016/j.neuroscience.2009.08.038
|
[40] | Anderson NJ, Daunais JB, Friedman DP, Grant KA, McCool BA (2007) Long-term ethanol self-administration by the nonhuman primate, Macaca fascicularis, decreases the benzodiazepine sensitivity of amygdala GABA(A) receptors. Alcohol Clin Exp Res 31: 1061–1070. doi: 10.1111/j.1530-0277.2007.00394.x
|
[41] | Paulus MP, Feinstein JS, Castillo G, Simmons AN, Stein MB (2005) Dose-dependent decrease of activation in bilateral amygdala and insula by lorazepam during emotion processing. Arch Gen Psychiatry 62: 282–288. doi: 10.1001/archpsyc.62.3.282
|
[42] | Barbalho CA, Nunes-de-Souza RL, Canto-de-Souza A (2009) Similar anxiolytic-like effects following intra-amygdala infusions of benzodiazepine receptor agonist and antagonist: evidence for the release of an endogenous benzodiazepine inverse agonist in mice exposed to elevated plus-maze test. Brain Res 1267: 65–76. doi: 10.1016/j.brainres.2009.02.042
|
[43] | Sanders SK, Shekhar A (1995) Regulation of anxiety by GABAA receptors in the rat amygdala. Pharmacol Biochem Behav 52: 701–706. doi: 10.1016/0091-3057(95)00153-n
|
[44] | Sanders SK, Shekhar A (1991) Blockade of GABAA receptors in the region of the anterior basolateral amygdala of rats elicits increases in heart rate and blood pressure. Brain Res 567: 101–110. doi: 10.1016/0006-8993(91)91441-3
|
[45] | Jacobson-Pick S, Richter-Levin G (2012) Short- and long-term effects of juvenile stressor exposure on the expression of GABAA receptor subunits in rats. Stress 15: 416–424. doi: 10.3109/10253890.2011.634036
|
[46] | Jacobson-Pick S, Elkobi A, Vander S, Rosenblum K, Richter-Levin G (2008) Juvenile stress-induced alteration of maturation of the GABAA receptor alpha subunit in the rat. Int J Neuropsychopharmacol 11: 891–903. doi: 10.1017/s1461145708008559
|
[47] | Mohler H (2012) The GABA system in anxiety and depression and its therapeutic potential. Neuropharmacology 62: 42–53. doi: 10.1016/j.neuropharm.2011.08.040
|
[48] | Malizia AL, Cunningham VJ, Bell CJ, Liddle PF, Jones T, et al. (1998) Decreased brain GABA(A)-benzodiazepine receptor binding in panic disorder: preliminary results from a quantitative PET study. Arch Gen Psychiatry 55: 715–720. doi: 10.1001/archpsyc.55.8.715
|
[49] | Hasler G, Nugent AC, Carlson PJ, Carson RE, Geraci M, et al. (2008) Altered cerebral gamma-aminobutyric acid type A-benzodiazepine receptor binding in panic disorder determined by [11C]flumazenil positron emission tomography. Arch Gen Psychiatry 65: 1166–1175. doi: 10.1001/archpsyc.65.10.1166
|
[50] | Bremner JD, Innis RB, Southwick SM, Staib L, Zoghbi S, et al. (2000) Decreased benzodiazepine receptor binding in prefrontal cortex in combat-related posttraumatic stress disorder. Am J Psychiatry 157: 1120–1126. doi: 10.1176/appi.ajp.157.7.1120
|
[51] | Nutt DJ, Malizia AL (2004) Structural and functional brain changes in posttraumatic stress disorder. J Clin Psychiatry 65 Suppl 111–17.
|
[52] | Fritschy JM, Mohler H (1995) GABAA-receptor heterogeneity in the adult rat brain: differential regional and cellular distribution of seven major subunits. J Comp Neurol 359: 154–194. doi: 10.1002/cne.903590111
|
[53] | Rudolph U, Mohler H (2006) GABA-based therapeutic approaches: GABAA receptor subtype functions. Curr Opin Pharmacol 6: 18–23. doi: 10.1016/j.coph.2005.10.003
|
[54] | Skolnick P (2012) Anxioselective anxiolytics: on a quest for the Holy Grail. Trends Pharmacol Sci 33: 611–620. doi: 10.1016/j.tips.2012.08.003
|
[55] | Mohler H, Benke D, Benson J, Luscher B, Fritschy JM (1995) GABAA-receptor subtypes in vivo: cellular localization, pharmacology and regulation. Adv Biochem Psychopharmacol 48: 41–56.
|
[56] | Mohler H, Knoflach F, Paysan J, Motejlek K, Benke D, et al. (1995) Heterogeneity of GABAA-receptors: cell-specific expression, pharmacology, and regulation. Neurochem Res 20: 631–636. doi: 10.1007/bf01694546
|
[57] | Rudolph U, Crestani F, Mohler H (2001) GABA(A) receptor subtypes: dissecting their pharmacological functions. Trends Pharmacol Sci 22: 188–194. doi: 10.1016/s0165-6147(00)01646-1
|
[58] | Nelson EC, Agrawal A, Pergadia ML, Lynskey MT, Todorov AA, et al. (2009) Association of childhood trauma exposure and GABRA2 polymorphisms with risk of posttraumatic stress disorder in adults. Mol Psychiatry 14: 234–235. doi: 10.1038/mp.2008.81
|
[59] | Pitkanen A, Savander V, LeDoux JE (1997) Organization of intra-amygdaloid circuitries in the rat: an emerging framework for understanding functions of the amygdala. Trends Neurosci 20: 517–523. doi: 10.1016/s0166-2236(97)01125-9
|
[60] | Phelps EA, LeDoux JE (2005) Contributions of the amygdala to emotion processing: from animal models to human behavior. Neuron 48: 175–187. doi: 10.1016/j.neuron.2005.09.025
|
[61] | Pellow S, File SE (1986) Anxiolytic and anxiogenic drug effects on exploratory activity in an elevated plus-maze: a novel test of anxiety in the rat. Pharmacol Biochem Behav 24: 525–529. doi: 10.1016/0091-3057(86)90552-6
|
[62] | Veenit V, Cordero MI, Tzanoulinou S, Sandi C (2013) Increased corticosterone in peripubertal rats leads to long-lasting alterations in social exploration and aggression. Front Behav Neurosci 7: 26. doi: 10.3389/fnbeh.2013.00026
|
[63] | Moy SS, Nadler JJ, Perez A, Barbaro RP, Johns JM, et al. (2004) Sociability and preference for social novelty in five inbred strains: an approach to assess autistic-like behavior in mice. Genes Brain Behav 3: 287–302. doi: 10.1111/j.1601-1848.2004.00076.x
|
[64] | Kohl C, Riccio O, Grosse J, Zanoletti O, Fournier C, et al. (2013) Hippocampal neuroligin-2 overexpression leads to reduced aggression and inhibited novelty reactivity in rats. PLoS One 8: e56871. doi: 10.1371/journal.pone.0056871
|
[65] | Hsu SM, Raine L, Fanger H (1981) Use of avidin-biotin-peroxidase complex (ABC) in immunoperoxidase techniques: a comparison between ABC and unlabeled antibody (PAP) procedures. J Histochem Cytochem 29: 577–580. doi: 10.1177/29.4.6166661
|
[66] | Varea E, Castillo-Gomez E, Gomez-Climent MA, Blasco-Ibanez JM, Crespo C, et al. (2007) Chronic antidepressant treatment induces contrasting patterns of synaptophysin and PSA-NCAM expression in different regions of the adult rat telencephalon. Eur Neuropsychopharmacol 17: 546–557. doi: 10.1016/j.euroneuro.2007.01.001
|
[67] | Marti O, Marti J, Armario A (1994) Effects of chronic stress on food intake in rats: influence of stressor intensity and duration of daily exposure. Physiol Behav 55: 747–753. doi: 10.1016/0031-9384(94)90055-8
|
[68] | Krahn DD, Gosnell BA, Majchrzak MJ (1990) The anorectic effects of CRH and restraint stress decrease with repeated exposures. Biol Psychiatry 27: 1094–1102. doi: 10.1016/0006-3223(90)90046-5
|
[69] | Bisaz R, Schachner M, Sandi C (2011) Causal evidence for the involvement of the neural cell adhesion molecule, NCAM, in chronic stress-induced cognitive impairments. Hippocampus 21: 56–71. doi: 10.1002/hipo.20723
|
[70] | Spruijt BM, van Hooff JA, Gispen WH (1992) Ethology and neurobiology of grooming behavior. Physiol Rev 72: 825–852.
|
[71] | van Erp AM, Kruk MR, Meelis W, Willekens-Bramer DC (1994) Effect of environmental stressors on time course, variability and form of self-grooming in the rat: handling, social contact, defeat, novelty, restraint and fur moistening. Behav Brain Res 65: 47–55. doi: 10.1016/0166-4328(94)90072-8
|
[72] | Moody TW, Merali Z, Crawley JN (1988) The effects of anxiolytics and other agents on rat grooming behavior. Ann N Y Acad Sci 525: 281–290. doi: 10.1111/j.1749-6632.1988.tb38613.x
|
[73] | Avital A, Ram E, Maayan R, Weizman A, Richter-Levin G (2006) Effects of early-life stress on behavior and neurosteroid levels in the rat hypothalamus and entorhinal cortex. Brain Res Bull 68: 419–424. doi: 10.1016/j.brainresbull.2005.09.015
|
[74] | Bazak N, Kozlovsky N, Kaplan Z, Matar M, Golan H, et al. (2009) Pre-pubertal stress exposure affects adult behavioral response in association with changes in circulating corticosterone and brain-derived neurotrophic factor. Psychoneuroendocrinology 34: 844–858. doi: 10.1016/j.psyneuen.2008.12.018
|
[75] | Ilin Y, Richter-Levin G (2009) Enriched environment experience overcomes learning deficits and depressive-like behavior induced by juvenile stress. PLoS One 4: e4329. doi: 10.1371/journal.pone.0004329
|
[76] | McCormick CM, Smith C, Mathews IZ (2008) Effects of chronic social stress in adolescence on anxiety and neuroendocrine response to mild stress in male and female rats. Behav Brain Res 187: 228–238. doi: 10.1016/j.bbr.2007.09.005
|
[77] | Ito H, Nagano M, Suzuki H, Murakoshi T (2010) Chronic stress enhances synaptic plasticity due to disinhibition in the anterior cingulate cortex and induces hyper-locomotion in mice. Neuropharmacology 58: 746–757. doi: 10.1016/j.neuropharm.2009.12.011
|
[78] | Vidal J, Bie J, Granneman RA, Wallinga AE, Koolhaas JM, et al. (2007) Social stress during adolescence in Wistar rats induces social anxiety in adulthood without affecting brain monoaminergic content and activity. Physiol Behav 92: 824–830. doi: 10.1016/j.physbeh.2007.06.004
|
[79] | Ackermann RF, Finch DM, Babb TL, Engel J Jr (1984) Increased glucose metabolism during long-duration recurrent inhibition of hippocampal pyramidal cells. J Neurosci 4: 251–264.
|
[80] | Nudo RJ, Masterton RB (1986) Stimulation-induced [14C]2-deoxyglucose labeling of synaptic activity in the central auditory system. J Comp Neurol 245: 553–565. doi: 10.1002/cne.902450410
|
[81] | Vyas A, Mitra R, Shankaranarayana Rao BS, Chattarji S (2002) Chronic stress induces contrasting patterns of dendritic remodeling in hippocampal and amygdaloid neurons. J Neurosci 22: 6810–6818.
|
[82] | Gilabert-Juan J, Castillo-Gomez E, Perez-Rando M, Molto MD, Nacher J (2011) Chronic stress induces changes in the structure of interneurons and in the expression of molecules related to neuronal structural plasticity and inhibitory neurotransmission in the amygdala of adult mice. Exp Neurol 232: 33–40. doi: 10.1016/j.expneurol.2011.07.009
|
[83] | Phan KL, Fitzgerald DA, Nathan PJ, Tancer ME (2006) Association between amygdala hyperactivity to harsh faces and severity of social anxiety in generalized social phobia. Biol Psychiatry 59: 424–429. doi: 10.1016/j.biopsych.2005.08.012
|
[84] | Lin HC, Gean PW, Wang CC, Chan YH, Chen PS (2013) The amygdala excitatory/inhibitory balance in a valproate-induced rat autism model. PLoS One 8: e55248. doi: 10.1371/journal.pone.0055248
|
[85] | Rubenstein JL, Merzenich MM (2003) Model of autism: increased ratio of excitation/inhibition in key neural systems. Genes Brain Behav 2: 255–267. doi: 10.1034/j.1601-183x.2003.00037.x
|
[86] | Kash SF, Tecott LH, Hodge C, Baekkeskov S (1999) Increased anxiety and altered responses to anxiolytics in mice deficient in the 65-kDa isoform of glutamic acid decarboxylase. Proc Natl Acad Sci U S A 96: 1698–1703. doi: 10.1073/pnas.96.4.1698
|
[87] | Marowsky A, Fritschy JM, Vogt KE (2004) Functional mapping of GABA A receptor subtypes in the amygdala. Eur J Neurosci 20: 1281–1289. doi: 10.1111/j.1460-9568.2004.03574.x
|
[88] | Marowsky A, Rudolph U, Fritschy JM, Arand M (2012) Tonic inhibition in principal cells of the amygdala: a central role for alpha3 subunit-containing GABAA receptors. J Neurosci 32: 8611–8619. doi: 10.1523/jneurosci.4404-11.2012
|
[89] | Engin E, Liu J, Rudolph U (2012) alpha2-containing GABA(A) receptors: a target for the development of novel treatment strategies for CNS disorders. Pharmacol Ther 136: 142–152. doi: 10.1016/j.pharmthera.2012.08.006
|
[90] | Dias R, Sheppard WF, Fradley RL, Garrett EM, Stanley JL, et al. (2005) Evidence for a significant role of alpha 3-containing GABAA receptors in mediating the anxiolytic effects of benzodiazepines. J Neurosci 25: 10682–10688. doi: 10.1523/jneurosci.1166-05.2005
|
[91] | Atack JR, Hutson PH, Collinson N, Marshall G, Bentley G, et al. (2005) Anxiogenic properties of an inverse agonist selective for alpha3 subunit-containing GABA A receptors. Br J Pharmacol 144: 357–366. doi: 10.1038/sj.bjp.0706056
|
[92] | Fischer BD, Atack JR, Platt DM, Reynolds DS, Dawson GR, et al. (2011) Contribution of GABA(A) receptors containing alpha3 subunits to the therapeutic-related and side effects of benzodiazepine-type drugs in monkeys. Psychopharmacology (Berl) 215: 311–319. doi: 10.1007/s00213-010-2142-y
|
[93] | Shiah IS, Yatham LN (1998) GABA function in mood disorders: an update and critical review. Life Sci 63: 1289–1303. doi: 10.1016/s0024-3205(98)00241-0
|
[94] | Hettema JM, An SS, Neale MC, Bukszar J, van den Oord EJ, et al. (2006) Association between glutamic acid decarboxylase genes and anxiety disorders, major depression, and neuroticism. Mol Psychiatry 11: 752–762. doi: 10.1038/sj.mp.4001845
|
[95] | Caldji C, Francis D, Sharma S, Plotsky PM, Meaney MJ (2000) The effects of early rearing environment on the development of GABAA and central benzodiazepine receptor levels and novelty-induced fearfulness in the rat. Neuropsychopharmacology 22: 219–229. doi: 10.1016/s0893-133x(99)00110-4
|
[96] | Liu M, Glowa JR (2000) Regulation of benzodiazepine receptor binding and GABA(A) subunit mRNA expression by punishment and acute alprazolam administration. Brain Res 887: 23–33. doi: 10.1016/s0006-8993(00)02962-0
|
[97] | Bennur S, Shankaranarayana Rao BS, Pawlak R, Strickland S, McEwen BS, et al. (2007) Stress-induced spine loss in the medial amygdala is mediated by tissue-plasminogen activator. Neuroscience 144: 8–16. doi: 10.1016/j.neuroscience.2006.08.075
|
[98] | Cordero MI, Poirier GL, Marquez C, Veenit V, Fontana X, et al. (2012) Evidence for biological roots in the transgenerational transmission of intimate partner violence. Transl Psychiatry 2: e106. doi: 10.1038/tp.2012.32
|
[99] | Toledo-Rodriguez M, Sandi C (2007) Stress before puberty exerts a sex- and age-related impact on auditory and contextual fear conditioning in the rat. Neural Plast 2007: 71203. doi: 10.1155/2007/71203
|
[100] | Toledo-Rodriguez M, Pitiot A, Paus T, Sandi C (2012) Stress during puberty boosts metabolic activation associated with fear-extinction learning in hippocampus, basal amygdala and cingulate cortex. Neurobiol Learn Mem 98: 93–101. doi: 10.1016/j.nlm.2012.05.006
|
[101] | Haller J, Mikics E, Halasz J, Toth M (2005) Mechanisms differentiating normal from abnormal aggression: glucocorticoids and serotonin. Eur J Pharmacol 526: 89–100. doi: 10.1016/j.ejphar.2005.09.064
|
[102] | Barad M, Gean PW, Lutz B (2006) The role of the amygdala in the extinction of conditioned fear. Biol Psychiatry 60: 322–328. doi: 10.1016/j.biopsych.2006.05.029
|
[103] | Li G, Nair SS, Quirk GJ (2009) A biologically realistic network model of acquisition and extinction of conditioned fear associations in lateral amygdala neurons. J Neurophysiol 101: 1629–1646. doi: 10.1152/jn.90765.2008
|
[104] | Trezza V, Campolongo P (2009) Toward understanding the neurobiology of social attachment: role of estrogen receptors in the medial amygdala. J Neurosci 29: 1–2. doi: 10.1523/jneurosci.5193-08.2009
|
[105] | Veenit V, Riccio O, Sandi C (2014) CRHR1 links peripuberty stress with deficits in social and stress-coping behaviors. J Psychiatr Res.
|
[106] | Rainnie DG, Bergeron R, Sajdyk TJ, Patil M, Gehlert DR, et al. (2004) Corticotrophin releasing factor-induced synaptic plasticity in the amygdala translates stress into emotional disorders. J Neurosci 24: 3471–3479. doi: 10.1523/jneurosci.5740-03.2004
|
[107] | Duvarci S, Pare D (2007) Glucocorticoids enhance the excitability of principal basolateral amygdala neurons. J Neurosci 27: 4482–4491. doi: 10.1523/jneurosci.0680-07.2007
|
[108] | de Kloet ER, de Jong IE, Oitzl MS (2008) Neuropharmacology of glucocorticoids: focus on emotion, cognition and cocaine. Eur J Pharmacol 585: 473–482. doi: 10.1016/j.ejphar.2008.03.011
|
[109] | Darnaudery M, Maccari S (2008) Epigenetic programming of the stress response in male and female rats by prenatal restraint stress. Brain Res Rev 57: 571–585. doi: 10.1016/j.brainresrev.2007.11.004
|
[110] | Cullinan WE, Ziegler DR, Herman JP (2008) Functional role of local GABAergic influences on the HPA axis. Brain Struct Funct 213: 63–72. doi: 10.1007/s00429-008-0192-2
|
[111] | Herman JP, Cullinan WE (1997) Neurocircuitry of stress: central control of the hypothalamo-pituitary-adrenocortical axis. Trends Neurosci 20: 78–84. doi: 10.1016/s0166-2236(96)10069-2
|
[112] | Martijena ID, Rodriguez Manzanares PA, Lacerra C, Molina VA (2002) Gabaergic modulation of the stress response in frontal cortex and amygdala. Synapse 45: 86–94. doi: 10.1002/syn.10085
|
[113] | Gafford GM, Guo JD, Flandreau EI, Hazra R, Rainnie DG, et al. (2012) Cell-type specific deletion of GABA(A)alpha1 in corticotropin-releasing factor-containing neurons enhances anxiety and disrupts fear extinction. Proc Natl Acad Sci U S A 109: 16330–16335. doi: 10.1073/pnas.1119261109
|