全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS ONE  2014 

Lysosomal Function Is Involved in 17β-Estradiol-Induced Estrogen Receptor α Degradation and Cell Proliferation

DOI: 10.1371/journal.pone.0094880

Full-Text   Cite this paper   Add to My Lib

Abstract:

The homeostatic control of the cellular proteome steady-state is dependent either on the 26S proteasome activity or on the lysosome function. The sex hormone 17β-estradiol (E2) controls a plethora of biological functions by binding to the estrogen receptor α (ERα), which is both a nuclear ligand-activated transcription factor and also an extrinsic plasma membrane receptor. Regulation of E2-induced physiological functions (e.g., cell proliferation) requires the synergistic activation of both transcription of estrogen responsive element (ERE)-containing genes and rapid extra-nuclear phosphorylation of many different signalling kinases (e.g., ERK/MAPK; PI3K/AKT). Although E2 controls ERα intracellular content and activity via the 26S proteasome-mediated degradation, biochemical and microscopy-based evidence suggests a possible cross-talk among lysosomes and ERα activities. Here, we studied the putative localization of endogenous ERα to lysosomes and the role played by lysosomal function in ERα signalling. By using confocal microscopy and biochemical assays, we report that ERα localizes to lysosomes and to endosomes in an E2-dependent manner. Moreover, the inhibition of lysosomal function obtained by chloroquine demonstrates that, in addition to 26S proteasome-mediated receptor elimination, lysosome-based degradation also contributes to the E2-dependent ERα breakdown. Remarkably, the lysosome function is further involved in those ERα activities required for E2-dependent cell proliferation while it is dispensable for ERα-mediated ERE-containing gene transcription. Our discoveries reveal a novel lysosome-dependent degradation pathway for ERα and show a novel biological mechanism by which E2 regulates ERα cellular content and, as a consequence, cellular functions.

References

[1]  Powers ET, Balch WE (2013) Diversity in the origins of proteostasis networks–a driver for protein function in evolution. Nat Rev Mol Cell Biol 14: 237–248. doi: 10.1038/nrm3542
[2]  Scita G, Di Fiore PP (2010) The endocytic matrix. Nature 463: 464–473. doi: 10.1038/nature08910
[3]  Wang X, Robbins J (2013) Proteasomal and lysosomal protein degradation and heart disease. J Mol Cell Cardiol.
[4]  Acconcia F, Marino M (2011) The effects of 17β-estradiol in cancer are mediated by estrogen receptor signaling at the plasma membrane. Frontiers in PHYSIOLOGY 2: 30. doi: 10.3389/fphys.2011.00030
[5]  Acconcia F, Ascenzi P, Bocedi A, Spisni E, Tomasi V, et al. (2005) Palmitoylation-dependent estrogen receptor alpha membrane localization: Regulation by 17 beta-estradiol. Molecular Biology of the Cell 16: 231–237. doi: 10.1091/mbc.e04-07-0547
[6]  La Rosa P, Pesiri V, Leclercq G, Marino M, Acconcia F (2012) Palmitoylation Regulates 17beta-Estradiol-Induced Estrogen Receptor-alpha Degradation and Transcriptional Activity. Mol Endocrinol 26: 762–774. doi: 10.1210/me.2011-1208
[7]  Pedram A, Razandi M, Deschenes RJ, Levin ER (2012) DHHC-7 and -21 are palmitoylacyltransferases for sex steroid receptors. Mol Biol Cell 23: 188–199. doi: 10.1091/mbc.e11-07-0638
[8]  Pedram A, Razandi M, Sainson RC, Kim JK, Hughes CC, et al. (2007) A conserved mechanism for steroid receptor translocation to the plasma membrane. J Biol Chem 282: 22278–22288. doi: 10.1074/jbc.m611877200
[9]  Adlanmerini M, Solinhac R, Abot A, Fabre A, Raymond-Letron I, et al. (2014) Mutation of the palmitoylation site of estrogen receptor alpha in vivo reveals tissue-specific roles for membrane versus nuclear actions. Proc Natl Acad Sci U S A 111: E283–290. doi: 10.1073/pnas.1322057111
[10]  La Rosa P, Acconcia F (2011) Signaling functions of ubiquitin in the 17beta-estradiol (E2):estrogen receptor (ER) alpha network. J Steroid Biochem Mol Biol 127: 223–230. doi: 10.1016/j.jsbmb.2011.07.008
[11]  Metivier R, Penot G, Hubner MR, Reid G, Brand H, et al. (2003) Estrogen receptor-alpha directs ordered, cyclical, and combinatorial recruitment of cofactors on a natural target promoter. Cell 115: 751–763. doi: 10.1016/s0092-8674(03)00934-6
[12]  Reid G, Hubner MR, Metivier R, Brand H, Denger S, et al. (2003) Cyclic, proteasome-mediated turnover of unliganded and liganded ERalpha on responsive promoters is an integral feature of estrogen signaling. Mol Cell 11: 695–707. doi: 10.1016/s1097-2765(03)00090-x
[13]  La Rosa P, Pellegrini M, Totta P, Acconcia F, Marino M (2014) Xenoestrogens Alter Estrogen Receptor (ER) α Intracellular Levels. Plos One.
[14]  Pietras RJ, Szego CM (1984) Specific internalization of estrogen and binding to nuclear matrix in isolated uterine cells. Biochem Biophys Res Commun 123: 84–91. doi: 10.1016/0006-291x(84)90383-8
[15]  Moats RK 2nd, Ramirez VD (2000) Electron microscopic visualization of membrane-mediated uptake and translocation of estrogen-BSA:colloidal gold by hep G2 cells. J Endocrinol 166: 631–647. doi: 10.1677/joe.0.1660631
[16]  Kisler K, Chow RH, Dominguez R (2013) Fluorescently-Labeled Estradiol Internalization and Membrane Trafficking in Live N-38 Neuronal Cells Visualized with Total Internal Reflection Fluorescence Microscopy. J Steroids Horm Sci Suppl 12.
[17]  Laios I, Journe F, Nonclercq D, Vidal DS, Toillon RA, et al. (2005) Role of the proteasome in the regulation of estrogen receptor alpha turnover and function in MCF-7 breast carcinoma cells. J Steroid Biochem Mol Biol 94: 347–359. doi: 10.1016/j.jsbmb.2005.02.005
[18]  Sigismund S, Confalonieri S, Ciliberto A, Polo S, Scita G, et al. (2012) Endocytosis and signaling: cell logistics shape the eukaryotic cell plan. Physiol Rev 92: 273–366. doi: 10.1152/physrev.00005.2011
[19]  Welsh AW, Lannin DR, Young GS, Sherman ME, Figueroa JD, et al. (2012) Cytoplasmic Estrogen Receptor in Breast Cancer. Clin Cancer Res 18: 118–126. doi: 10.1158/1078-0432.ccr-11-1236
[20]  Dan P, Cheung JC, Scriven DR, Moore ED (2003) Epitope-dependent localization of estrogen receptor-alpha, but not -beta, in en face arterial endothelium. Am J Physiol Heart Circ Physiol 284: H1295–1306.
[21]  Burns KA, Li Y, Arao Y, Petrovich RM, Korach KS (2011) Selective mutations in estrogen receptor alpha D-domain alters nuclear translocation and non-estrogen response element gene regulatory mechanisms. J Biol Chem 286: 12640–12649. doi: 10.1074/jbc.m110.187773
[22]  Steinman RM, Mellman IS, Muller WA, Cohn ZA (1983) Endocytosis and the recycling of plasma membrane. J Cell Biol 96: 1–27. doi: 10.1083/jcb.96.1.1
[23]  Acconcia F, Ascenzi P, Fabozzi G, Visca P, Marino M (2004) S-palmitoylation modulates human estrogen receptor-alpha functions. Biochem Biophys Res Commun 316: 878–883. doi: 10.1016/j.bbrc.2004.02.129
[24]  Acconcia F, Totta P, Ogawa S, Cardillo I, Inoue S, et al. (2005) Survival versus apoptotic 17beta-estradiol effect: role of ER alpha and ER beta activated non-genomic signaling. J Cell Physiol 203: 193–201. doi: 10.1002/jcp.20219
[25]  Castoria G, Migliaccio A, Bilancio A, Di Domenico M, de Falco A, et al. (2001) PI3-kinase in concert with Src promotes the S-phase entry of oestradiol-stimulated MCF-7 cells. EMBO J 20: 6050–6059. doi: 10.1093/emboj/20.21.6050
[26]  Leclercq G, Lacroix M, Laios I, Laurent G (2006) Estrogen receptor alpha: impact of ligands on intracellular shuttling and turnover rate in breast cancer cells. Curr Cancer Drug Targets 6: 39–64. doi: 10.2174/156800906775471716
[27]  Berry NB, Fan M, Nephew KP (2008) Estrogen receptor-alpha hinge-region lysines 302 and 303 regulate receptor degradation by the proteasome. Mol Endocrinol 22: 1535–1551. doi: 10.1210/me.2007-0449
[28]  Sigismund S, Argenzio E, Tosoni D, Cavallaro E, Polo S, et al. (2008) Clathrin-mediated internalization is essential for sustained EGFR signaling but dispensable for degradation. Developmental Cell 15: 209–219. doi: 10.1016/j.devcel.2008.06.012
[29]  He Y, Xu Y, Zhang C, Gao X, Dykema KJ, et al. (2013) Identification of a lysosomal pathway that modulates glucocorticoid signaling and the inflammatory response. Sci Signal 4: ra44. doi: 10.1126/scisignal.2001450
[30]  Fan M, Nakshatri H, Nephew KP (2004) Inhibiting proteasomal proteolysis sustains estrogen receptor-alpha activation. Mol Endocrinol 18: 2603–2615. doi: 10.1210/me.2004-0164
[31]  Solomon VR, Lee H (2009) Chloroquine and its analogs: a new promise of an old drug for effective and safe cancer therapies. Eur J Pharmacol 625: 220–233. doi: 10.1016/j.ejphar.2009.06.063
[32]  Imperi F, Massai F, Facchini M, Frangipani E, Visaggio D, et al. (2013) Repurposing the antimycotic drug flucytosine for suppression of Pseudomonas aeruginosa pathogenicity. Proc Natl Acad Sci U S A 110: 7458–7463. doi: 10.1073/pnas.1222706110
[33]  Razandi M, Oh P, Pedram A, Schnitzer J, Levin ER (2002) ERs associate with and regulate the production of caveolin: implications for signaling and cellular actions. Mol Endocrinol 16: 100–115. doi: 10.1210/mend.16.1.0757
[34]  Marquez DC, Chen HW, Curran EM, Welshons WV, Pietras RJ (2006) Estrogen receptors in membrane lipid rafts and signal transduction in breast cancer. Mol Cell Endocrinol 246: 91–100. doi: 10.1016/j.mce.2005.11.020
[35]  Acconcia F, Kumar R (2006) Signaling regulation of genomic and nongenomic functions of estrogen receptors. Cancer Letters 238: 1–14. doi: 10.1016/j.canlet.2005.06.018
[36]  La Rosa P, Pesiri V, Marino M, Acconcia F (2011) 17 beta-Estradiol-induced cell proliferation requires estrogen receptor (ER) alpha monoubiquitination. Cellular Signalling 23: 1128–1135. doi: 10.1016/j.cellsig.2011.02.006

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133