全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS ONE  2014 

Thromboxane A2 Receptor Stimulation Promotes Closure of the Rat Ductus Arteriosus through Enhancing Neointima Formation

DOI: 10.1371/journal.pone.0094895

Full-Text   Cite this paper   Add to My Lib

Abstract:

Ductus arteriosus (DA) closure follows constriction and remodeling of the entire vessel wall. Patent ductus arteriosus occurs when the DA does not close after birth, and this condition is currently treated using cyclooxygenase inhibitors. However, the efficacy of cyclooxygenase inhibitors is often limited. Our previous study demonstrated that low-dose thromboxane A2 receptor (TP) stimulation constricted the DA with minimal adverse effects in rat neonates. However, its effect on DA remodeling remains unknown. In this study, we focused on the impact of the exogenous TP stimulation on the DA remodeling, especially intimal thickening. Using DA explants from rat fetuses at embryonic day 19 as a ex vivo model and primary cultured rat DA smooth muscle cells from embryonic day 21 as a in vitro model, we evaluated the effect of TP stimulation on the DA remodeling. The selective TP agonists U46619 and I-BOP promoted neointima formation in the ex vivo DA explants, and TP stimulation increased DA SMC migration in a dose-dependent manner. Both effects were inhibited by the selective TP antagonist SQ29548 or the siRNA against TP. TP stimulation also increased DA SMC proliferation in the presence of 10% fetal bovine serum. LC/MS/MS analysis revealed that TP stimulation increased secretion of several extracellular matrix proteins that may contribute to an increase in neointima formation. In conclusion, we uncovered that exogenous administration of TP agonist promotes neointima formation through the induction of migration and proliferation of DA SMC, which could contribute to DA closure and also to its vasoconstrictive action.

References

[1]  Van Overmeire B, Smets K, Lecoutere D, Van de Broek H, Weyler J, et al. (2000) A comparison of ibuprofen and indomethacin for closure of patent ductus arteriosus. N Engl J Med 343: 674–681. doi: 10.1056/nejm200009073431001
[2]  Hermes-DeSantis ER, Clyman RI (2006) Patent ductus arteriosus: pathophysiology and management. J Perinatol 26: S14–18.
[3]  Smith GC (1998) The pharmacology of the ductus arteriosus. Pharmacol Rev 50: 35–58.
[4]  Van Overmeire B, Allegaert K, Casaer A, Debauche C, Decaluwé W, et al. (2004) Prophylactic ibuprofen in premature infants: a multicentre, randomised, double-blind, placebo-controlled trial. Lancet 364: 1945–1949. doi: 10.1016/s0140-6736(04)17477-1
[5]  Abdel-Hady H, Nasef N, Shabaan AE, Nour I (2013) Patent Ductus Arteriosus in Preterm Infants: Do We Have the Right Answers? Biomed Res Int 2013.
[6]  Little DC, Pratt TC, Blalock SE, Krauss DR, Cooney DR, et al. (2003) Patent ductus arteriosus in micropreemies and full-term infants: the relative merits of surgical ligation versus indomethacin treatment. J Pediatr Surg 38: 492–496. doi: 10.1053/jpsu.2003.50086
[7]  Palder SB, Schwartz MZ, Tyson KR, Marr CC (1987) Management of patent ductus arteriosus: a comparison of operative v pharmacologic treatment. J Pediatr Surg 22: 1171–1174. doi: 10.1016/s0022-3468(87)80730-3
[8]  Kabra NS, Schmidt B, Roberts RS, Doyle LW, Papile L, et al.. (2007) Neurosensory impairment after surgical closure of patent ductus arteriosus in extremely low birth weight infants: results from the Trial of Indomethacin Prophylaxis in Preterms. J Pediatr 150: : 229–234, 234.e221.
[9]  Yokoyama U, Minamisawa S, Ishikawa Y (2010) Regulation of vascular tone and remodeling of the ductus arteriosus. J Smooth Muscle Res 46: 77–87. doi: 10.1540/jsmr.46.77
[10]  Clyman RI (2006) Mechanisms regulating the ductus arteriosus. Biol Neonate 89: 330–335. doi: 10.1159/000092870
[11]  Gittenberger-de Groot AC, van Ertbruggen I, Moulaert AJ, Harinck E (1980) The ductus arteriosus in the preterm infant: histologic and clinical observations. J Pediatr 96: 88–93. doi: 10.1016/s0022-3476(80)80337-4
[12]  Slomp J, Gittenberger-de Groot AC, Glukhova MA, Conny van Munsteren J, Kockx MM, et al. (1997) Differentiation, dedifferentiation, and apoptosis of smooth muscle cells during the development of the human ductus arteriosus. Arterioscler Thromb Vasc Biol 17: 1003–1009. doi: 10.1161/01.atv.17.5.1003
[13]  Tada T, Wakabayashi T, Nakao Y, Ueki R, Ogawa Y, et al. (1985) Human ductus arteriosus. A histological study on the relation between ductal maturation and gestational age. Acta Pathol Jpn 35: 23–34. doi: 10.1111/j.1440-1827.1985.tb02203.x
[14]  B?kenkamp R, DeRuiter MC, van Munsteren C, Gittenberger-de Groot AC (2010) Insights into the pathogenesis and genetic background of patency of the ductus arteriosus. Neonatology 98: 6–17. doi: 10.1159/000262481
[15]  Gittenberger-de Groot AC, Strengers JL, Mentink M, Poelmann RE, Patterson DF (1985) Histologic studies on normal and persistent ductus arteriosus in the dog. J Am Coll Cardiol 6: 394–404. doi: 10.1016/s0735-1097(85)80178-9
[16]  Yokota T, Aida T, Ichikawa Y, Fujita T, Yokoyama U, et al. (2012) Low-dose thromboxane A2 receptor stimulation promotes closure of the rat ductus arteriosus with minimal adverse effects. Pediatr Res 72: 129–136. doi: 10.1038/pr.2012.68
[17]  Nakahata N (2008) Thromboxane A2: physiology/pathophysiology, cellular signal transduction and pharmacology. Pharmacol Ther 118: 18–35. doi: 10.1016/j.pharmthera.2008.01.001
[18]  Leonhardt A, Glaser A, Wegmann M, Schranz D, Seyberth H, et al. (2003) Expression of prostanoid receptors in human ductus arteriosus. Br J Pharmacol 138: 655–659. doi: 10.1038/sj.bjp.0705092
[19]  Sachinidis A, Flesch M, Ko Y, Schr?r K, B?hm M, et al. (1995) Thromboxane A2 and vascular smooth muscle cell proliferation. Hypertension 26: 771–780. doi: 10.1161/01.hyp.26.5.771
[20]  Cyrus T, Ding T, Pratico D (2010) Expression of thromboxane synthase, prostacyclin synthase and thromboxane receptor in atherosclerotic lesions: correlation with plaque composition. Atherosclerosis 208: 376–381. doi: 10.1016/j.atherosclerosis.2009.08.008
[21]  Zuccollo A, Shi C, Mastroianni R, Maitland-Toolan KA, Weisbrod RM, et al. (2005) The thromboxane A2 receptor antagonist S18886 prevents enhanced atherogenesis caused by diabetes mellitus. Circulation 112: 3001–3008. doi: 10.1161/circulationaha.105.581892
[22]  Smyth EM (2010) Thromboxane and the thromboxane receptor in cardiovascular disease. Clin Lipidol 5: 209–219. doi: 10.2217/clp.10.11
[23]  van der Sterren S, Villamor E (2011) Contractile effects of 15-E2t-isoprostane and 15-F2t-isoprostane on chicken embryo ductus arteriosus. Comp Biochem Physiol A Mol Integr Physiol 159: 436–444. doi: 10.1016/j.cbpa.2011.04.010
[24]  Loftin CD, Trivedi DB, Langenbach R (2002) Cyclooxygenase-1-selective inhibition prolongs gestation in mice without adverse effects on the ductus arteriosus. J Clin Invest 110: 549–557. doi: 10.1172/jci0214924
[25]  Yokoyama U, Minamisawa S, Quan H, Ghatak S, Akaike T, et al. (2006) Chronic activation of the prostaglandin receptor EP4 promotes hyaluronan-mediated neointimal formation in the ductus arteriosus. J Clin Invest 116: 3026–3034. doi: 10.1172/jci28639
[26]  Yokoyama U, Minamisawa S, Katayama A, Tang T, Suzuki S, et al. (2010) Differential regulation of vascular tone and remodeling via stimulation of type 2 and type 6 adenylyl cyclases in the ductus arteriosus. Circ Res 106: 1882–1892. doi: 10.1161/circresaha.109.214924
[27]  Yokoyama U, Minamisawa S, Adachi-Akahane S, Akaike T, Naguro I, et al. (2006) Multiple transcripts of Ca2+ channel alpha1-subunits and a novel spliced variant of the alpha1C-subunit in rat ductus arteriosus. Am J Physiol Heart Circ Physiol 290(4): H1660–70. doi: 10.1152/ajpheart.00100.2004
[28]  Liu NM, Yokota T, Maekawa S, Lü P, Tei I, et al. (2013) Transcription profiles of endothelial cells in the rat ductus arteriosus during a perinatal period. PLoS One 8: e73685. doi: 10.1371/journal.pone.0073685
[29]  Minamisawa S, Wang Y, Chen J, Ishikawa Y, Chien KR, et al. (2003) Atrial chamber-specific expression of sarcolipin is regulated during development and hypertrophic remodeling. J Biol Chem 278(11): 9570–5. doi: 10.1074/jbc.m213132200
[30]  Rabinovitch M (1996) Cell-extracellular matrix interactions in the ductus arteriosus and perinatal pulmonary circulation. Semin Perinatol 20: 531–541. doi: 10.1016/s0146-0005(96)80067-x
[31]  Murphy-Ullrich JE (2001) The de-adhesive activity of matricellular proteins: is intermediate cell adhesion an adaptive state? J Clin Invest 107: 785–790. doi: 10.1172/jci12609
[32]  Leask A, Abraham DJ (2006) All in the CCN family: essential matricellular signaling modulators emerge from the bunker. J Cell Sci 119: 4803–4810. doi: 10.1242/jcs.03270
[33]  Ballinger ML, Osman N, Hashimura K, de Haan JB, Jandeleit-Dahm K, et al. (2010) Imatinib inhibits vascular smooth muscle proteoglycan synthesis and reduces LDL binding in vitro and aortic lipid deposition in vivo. J Cell Mol Med 14: 1408–1418. doi: 10.1111/j.1582-4934.2009.00902.x
[34]  Tufvesson E, Westergren-Thorsson G (2003) Biglycan and decorin induce morphological and cytoskeletal changes involving signalling by the small GTPases RhoA and Rac1 resulting in lung fibroblast migration. J Cell Sci 116: 4857–4864. doi: 10.1242/jcs.00808
[35]  Mason CA, Bigras JL, O'Blenes SB, Zhou B, McIntyre B, et al. (1999) Gene transfer in utero biologically engineers a patent ductus arteriosus in lambs by arresting fibronectin-dependent neointimal formation. Nat Med 5: 176–182.
[36]  Yuhki K, Kojima F, Kashiwagi H, Kawabe J, Fujino T, et al. (2011) Roles of prostanoids in the pathogenesis of cardiovascular diseases: Novel insights from knockout mouse studies. Pharmacol Ther 129: 195–205. doi: 10.1016/j.pharmthera.2010.09.004
[37]  Cheng Y, Austin SC, Rocca B, Koller BH, Coffman TM, et al. (2002) Role of prostacyclin in the cardiovascular response to thromboxane A2. Science 296: 539–541. doi: 10.1126/science.1068711
[38]  Gao Y, Tang S, Zhou S, Ware JA (2001) The thromboxane A2 receptor activates mitogen-activated protein kinase via protein kinase C-dependent Gi coupling and Src-dependent phosphorylation of the epidermal growth factor receptor. J Pharmacol Exp Ther 296: 426–433.
[39]  Yun DH, Song HY, Lee MJ, Kim MR, Kim MY, et al. (2009) Thromboxane A(2) modulates migration, proliferation, and differentiation of adipose tissue-derived mesenchymal stem cells. Exp Mol Med 41: 17–24. doi: 10.3858/emm.2009.41.1.003
[40]  Chen XY, Dun JN, Miao QF, Zhang YJ (2009) Fasudil hydrochloride hydrate, a Rho-kinase inhibitor, suppresses 5-hydroxytryptamine-induced pulmonary artery smooth muscle cell proliferation via JNK and ERK1/2 pathway. Pharmacology 83: 67–79. doi: 10.1159/000178814
[41]  Li C, Q X (2000) Mechanical stress-initiated signal transductions in vascular smooth muscle cells. Cell Signal 12: 435–445. doi: 10.1016/s0898-6568(00)00096-6
[42]  Ross R (1986) The pathogenesis of atherosclerosis—an update. N Engl J Med 314: 488–500. doi: 10.1056/nejm198602203140806
[43]  Chervu A, Moore WS (1990) An overview of intimal hyperplasia. Surg Gynecol Obstet 171: 433–447.
[44]  Slomp J, van Munsteren JC, Poelmann RE, de Reeder EG, Bogers AJ, et al. (1992) Formation of intimal cushions in the ductus arteriosus as a model for vascular intimal thickening. An immunohistochemical study of changes in extracellular matrix components. Atherosclerosis 93: 25–39. doi: 10.1016/0021-9150(92)90197-o
[45]  Yokoyama U, Sato Y, Akaike T, Ishida S, Sawada J, et al. (2007) Maternal vitamin A alters gene profiles and structural maturation of the rat ductus arteriosus. Physiol Genomics 31: 139–157. doi: 10.1152/physiolgenomics.00007.2006
[46]  Gustafsson M, Levin M, Sk?lén K, Perman J, Fridén V, et al. (2007) Retention of low-density lipoprotein in atherosclerotic lesions of the mouse: evidence for a role of lipoprotein lipase. Circ Res 101: 777–783. doi: 10.1161/circresaha.107.149666
[47]  D'Antoni ML, Risse PA, Ferraro P, Martin JG, Ludwig MS (2012) Effects of decorin and biglycan on human airway smooth muscle cell adhesion. Matrix Biol 31: 101–112. doi: 10.1016/j.matbio.2011.11.001
[48]  Boudreau N, Turley E, Rabinovitch M (1991) Fibronectin, hyaluronan, and a hyaluronan binding protein contribute to increased ductus arteriosus smooth muscle cell migration. Dev Biol 143: 235–247. doi: 10.1016/0012-1606(91)90074-d
[49]  Hamrick SE, Hansmann G (2010) Patent ductus arteriosus of the preterm infant. Pediatrics 125: 1020–1030. doi: 10.1542/peds.2009-3506
[50]  Fineman JR, Chang R, Soifer SJ (1992) EDRF inhibition augments pulmonary hypertension in intact newborn lambs. Am J Physiol 262: H1365–1371.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133