全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS ONE  2014 

The Influence of Body Position on Cerebrospinal Fluid Pressure Gradient and Movement in Cats with Normal and Impaired Craniospinal Communication

DOI: 10.1371/journal.pone.0095229

Full-Text   Cite this paper   Add to My Lib

Abstract:

Intracranial hypertension is a severe therapeutic problem, as there is insufficient knowledge about the physiology of cerebrospinal fluid (CSF) pressure. In this paper a new CSF pressure regulation hypothesis is proposed. According to this hypothesis, the CSF pressure depends on the laws of fluid mechanics and on the anatomical characteristics inside the cranial and spinal space, and not, as is today generally believed, on CSF secretion, circulation and absorption. The volume and pressure changes in the newly developed CSF model, which by its anatomical dimensions and basic biophysical features imitates the craniospinal system in cats, are compared to those obtained on cats with and without the blockade of craniospinal communication in different body positions. During verticalization, a long-lasting occurrence of negative CSF pressure inside the cranium in animals with normal cranio-spinal communication was observed. CSF pressure gradients change depending on the body position, but those gradients do not enable unidirectional CSF circulation from the hypothetical site of secretion to the site of absorption in any of them. Thus, our results indicate the existence of new physiological/pathophysiological correlations between intracranial fluids, which opens up the possibility of new therapeutic approaches to intracranial hypertension.

References

[1]  Davson H, Welch K, Segal MB (1987) Physiology and pathophysiology of the cerebrospinal fluid. Edinburgh: Churchill-Livingstone. 1013 p.
[2]  Pollay M (2010) The function and structure of the cerebrospinal fluid outflow system. Cerebrospinal Fluid Res 21; 7: 9. doi: 10.1186/1743-8454-7-9
[3]  Sakka L, Coll G, Chazal J (2011) Anatomy and physiology of cerebrospinal fluid. Europ Ann Otorhinolaryngology, Head Neck Diseases 128: 309–316. doi: 10.1016/j.anorl.2011.03.002
[4]  Dandy WE (1929) Where is cerebrospinal fluid absorbed? JAMA 92: 2012–2014. doi: 10.1001/jama.1929.02700500024008
[5]  Brierly JF, Field EJ (1948) The connections of the cerebrospinal fluid space with the lymphatic system. J Anat 82: 153–166.
[6]  Bradbury MWB (1981) Lymphatics and central nervous system. Trends In Neurosc 4: 100–101. doi: 10.1016/0166-2236(81)90032-1
[7]  Johnston M, Zakharov A, Koh L, Armstrong D (2005) Subarachnoid injection of Microfil reveals connections between cerebrospinal fluid and nasal lymphatic in the non-human primate. Neuropathol Appl Neurobiol 31: 632–640. doi: 10.1111/j.1365-2990.2005.00679.x
[8]  Cutler RW, Page L, Galicich J, Watters GV (1968) Formation and absorption of cerebrospinal fluid in man. Brain 91: 707–720. doi: 10.1093/brain/91.4.707
[9]  Masserman JH (1934) Cerebrospinal fluid hydrodynamics IV. Clinical experimental studies. Arch Neurol Psychiat 32: 523–553. doi: 10.1001/archneurpsyc.1934.02250090060006
[10]  Loman J (1934) Components of cerebrospinal fluid pressure as affected by changes in posture. Arch Neurol Psychiat 31: 679–683.
[11]  Loman J, Myerson A, Goldman D (1935) Effects of alterations in posture on the cerebrospinal fluid pressure. Arch Neurol Psychiat 33: 1279–1295. doi: 10.1001/archneurpsyc.1935.02250180138007
[12]  Von Storch TJC, Carmichael EA, Banks TE (1937) Factors producing lumbar cerebrospinal fluid pressure in man in the errect posture. Arch Neurol Psychiat 38: 1158–1175. doi: 10.1001/archneurpsyc.1937.02260240038003
[13]  O'Connell JEA (1943) The vascular factor in intracranial pressure and maintenance of cerebrospinal fluid circulation. Brain 66: 204–228. doi: 10.1093/brain/66.3.204
[14]  Magnaes B (1976) Body position and cerebrospinal fluid pressure. Part 1: Clinical studies on the effect of rapid postural changes. J Neurosurg 44: 687–697. doi: 10.3171/jns.1976.44.6.0687
[15]  Magnaes B (1976) Body position and cerebrospinal fluid pressure. Part 2: Clinical studies on the orthostatic pressure and the hydrostatic indifferent point. J Neurosurg 44: 698–705. doi: 10.3171/jns.1976.44.6.0698
[16]  Marmarou A, Shulman K, Rosende RM (1978) A nonlinear analysis of the cerebrospinal fluid system and intracranial pressure dynamics. J Neurosurg 48: 332–344. doi: 10.3171/jns.1978.48.3.0332
[17]  Rosner MJ, Coley IB (1986) Cerebral perfusion pressure, intracranial pressure, and head elevation. J Neurosurg 65: 636–641. doi: 10.3171/jns.1986.65.5.0636
[18]  Fishman RA (1991) Cerebrospinal fluid in diseases of the nervous system. Philadelphia: WB Saunders Co, 431 p.
[19]  Magnaes B (1978) Movement of cerebrospinal fluid within craniospinal space when sitting up and lying down. Surg Neurol 10: 45–49.
[20]  Alperin N, Hushek SG, Lee SH, Sivaramakrishman A, Lichtor T (2005) MRI study of cerebral blood flow and CSF flow dynamics in upright posture: the effect of posture on the intracranial compliance and pressure. Acta Neurochir (Wien) 95 (Suppl): : 177–181.
[21]  Alperin N, Lee SH, Sivaramakrishnan A, Hushek SG (2005) Quantifying the effect of posture on intracranial physiology in humans by MRI flow studies. J Magn Reson Imaging 22: 591–596. doi: 10.1002/jmri.20427
[22]  Jurjevi? I, Rado? M, Ore?kovi? J, Priji? R, Tvrdei? A, et al. (2011) Physical characteristics in the new model of the cerebrospinal fluid system. Coll Antropol 35 (Suppl 1)51–56.
[23]  Martins AN, Wiley JK, Myers PW (1972) Dynamics of the cerebrospinal fluid and the spinal dura mater. J Neurol Neurosurg Psychiatry 35: 468–473. doi: 10.1136/jnnp.35.4.468
[24]  Tunturi AR (1977) Elasticity of the spinal cord dura in the dog. J Neurosurg 47: 391–396. doi: 10.3171/jns.1977.47.3.0391
[25]  Tunturi AR (1978) Elasticity of the spinal cord, pia, and denticulate ligament in the dog. J Neurosurg 48: 975–979. doi: 10.3171/jns.1978.48.6.0975
[26]  Ore?kovi? D, Klarica M (2010) The formation of cerebrospinal fluid: nearly a hundred years of interpretations and misinterpretations. Brain Res Rev 64: 241–262. doi: 10.1016/j.brainresrev.2010.04.006
[27]  Bulat M, Klarica M (2011) Recent insights into a new hydrodynamics of the cerebrospinal fluid. Brain Res Rev 65: 99–112. doi: 10.1016/j.brainresrev.2010.08.002
[28]  Ore?kovi? D, Klarica M (2011) Development of hydrocephalus and classical hypothesis of cerebrospinal fluid hydrodynamics: facts and illusions. Progress in Neurobiology 94: 238–258. doi: 10.1016/j.pneurobio.2011.05.005
[29]  Klarica M, Rado? M, Dragani? P, Erceg G, Ore?kovi? D, et al. (2006) Effect of head position on cerebrospinal fluid pressure in cats: comparison with artificial model. Croat Med J 47: 233–238.
[30]  Klarica M, Ore?kovi? D, Bo?i? B, Vuki? M, Butkovi? V, et al. (2009) New experimental model of acute aqueductal blockade in cats: Effects on cerebrospinal fluid pressure and the size of brain ventricles. Neurosci 158: 1397–1405. doi: 10.1016/j.neuroscience.2008.11.041
[31]  Zarzur E (1996) Mechanical properties of the human lumbar dura mater. Arq Neuropsiquiatr 54: 455–460. doi: 10.1590/s0004-282x1996000300015
[32]  Weed LH (1929) Some limitations of Monroe-Kellie hypothesis. Arch Surg 18: 1049–1068. doi: 10.1001/archsurg.1929.01140130137006
[33]  Weed LH (1933) Positional adjustments of the pressure of the cerebrospinal fluid. Physiol Rev 13: 80–102.
[34]  Pollock LJ, Boshes B (1936) Cerebrospinal fluid pressure. Arch Neurol Psychat 36: 931–974. doi: 10.1001/archneurpsyc.1936.02260110016005
[35]  Klarica M, Varda R, Vuki? M, Ore?kovi? D, Rado? M, et al. (2005) Spinal contribution to CSF pressure lowering effect of mannitol in cats. Acta Neurochir 95 (Suppl): 407–410.
[36]  Grashey H (1892) Experimentelle Beitr?ge zur Lehre von der Blut-Circulation in der Sch?del-Rückgratsh?lhle. In: Festschrift der med. Fakult?t der Universit?t München zur Feier des funfzigjahrigen Doctor Jubil?ums des Professor Ludwig Andreas Buchner, Munchen: J.F. Lehmann
[37]  Bradly KC (1970) Cerebrospinal fluid pressure. J Neurol Neurosurg Psychiat 33: 387–97.
[38]  Fox JL, McCullough DC, Green RC (1973) Effect of cerebrospinal fluid shunts on intracranial pressure and on cerebrospinal fluid dynamics. J Neurol Neurosurg Psychiat 36: 302–312. doi: 10.1136/jnnp.36.2.302
[39]  Portnoy HD, Schulte R, Fox JL, Croissant P, Tripp L (1973) Anti-siphon and reversible occlusion valves for shunting in hydrocephalus and preventing post-shunt subdural hematomas. J Neurosurg 38: 729–738. doi: 10.3171/jns.1973.38.6.0729
[40]  McCullough DC, Fox JL (1974) Negative inttracranial pressure hydrocephalus in adults with shunts and its relationship to production of subdural hematoma. J Neurosurg 40: 372–375. doi: 10.3171/jns.1974.40.3.0372
[41]  Chapman PH, Cosman ER, Arnold MA (1990) The relationship between ventricular fluid pressure and body position in normal subjects and subjects with shunts: a telemetric study. Neurosurgery 26: 181–189. doi: 10.1227/00006123-199002000-00001
[42]  Poca MA, Sahuquillo J, Topczewski T, Lastra R, Font ML, et al. (2006) Posture-induced changes in intracranial pressure: a comparative study in patients with or without a cerebrospinal fluid block at the craniovertebral junction. Neurosuregry 58: 899–905. doi: 10.1227/01.neu.0000209915.16235.6d
[43]  Levine DN, Rapalino O (2001) The pathophysiology of lumbar puncture headache. J Neurol Sci 192: 1–8. doi: 10.1016/s0022-510x(01)00601-3
[44]  Welch R (1980) The intracranial pressure in infants. J Neurosurg 52: 693–699. doi: 10.3171/jns.1980.52.5.0693
[45]  Michael H, Antes S, Breuskin D, Wagner W, Oertel J, et al. (2013) Telemetric ICP home-monitoring in pediatric neurosurgery. In Abstract Book of 15th International conference on intracranial pressure and brain monitoring: 6-10 November 2013; Singapore, Edited by Ivan Ng: National Neuroscience Institute – SingHealth Academy; 48.
[46]  Kuzman T, Jurjevi? I, Mandac I, Rado? M, Ore?kovi? D, et al. (2012) The effect of body position on intraocular and CSF pressures in the lateral ventricle, and in cortical and lumbar subarachnoid spaces in cats. Acta Neurochir 114 (Suppl): 357–361.
[47]  Bulat M, Lupret V, Ore?kovi? D, Klarica M (2008) Transventricular and transpial absorption of cerebrospinal fluid into cerebral microvessels. Coll Antropol 32 (Suppl 1)43–50.
[48]  Tschan CA, Welschehold S, Vulcu S, Oertel J, Wagner W (2010) First clinical experience with a new telemetric intracranial pressure probe in pediatric neurosurgery. In Abstract Book of 14th International conference of intracranial pressure and brain monitoring: 12–16 September 2010; Tübingen, Edited by Martin U. Schuhmann: Georg Thieme Verlag KG; 105.
[49]  Wiig H, Reed RK (1983) Rat brain interstitial fluid pressure measured with micropipettes. Am J Physiol 244: H239–H246.
[50]  Ore?kovi? D, Klarica M, Vuki? M (2002) The formation and circulation of cerebrospinal fluid inside the cat brain ventricles: a fact or an illusion? Neurosc Lett 327: 103–106. doi: 10.1016/s0304-3940(02)00395-6
[51]  Klarica M, Mi?e B, Vladi? A, Rado? M, Ore?kovi? D (2013) “Compensated hyperosmolarity“ of cerebrospinal fluid and the development of hydrocephalus. Neuroscience 248: 278–289. doi: 10.1016/j.neuroscience.2013.06.022
[52]  Igarashi H, Tsujita M, Kwee IL, Nakada T (2014) Water influx into cerebrospinal fluid is primarily controlled by aquaporin-4, not by aquaporin-1: 17O JJVCPE MRI study in knockout mice. NeuroReport 25: 39–43. doi: 10.1097/wnr.0000000000000042

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133