全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS ONE  2014 

Acetobixan, an Inhibitor of Cellulose Synthesis Identified by Microbial Bioprospecting

DOI: 10.1371/journal.pone.0095245

Full-Text   Cite this paper   Add to My Lib

Abstract:

In plants, cellulose biosynthesis is an essential process for anisotropic growth and therefore is an ideal target for inhibition. Based on the documented utility of small-molecule inhibitors to dissect complex cellular processes we identified a cellulose biosynthesis inhibitor (CBI), named acetobixan, by bio-prospecting among compounds secreted by endophytic microorganisms. Acetobixan was identified using a drug-gene interaction screen to sift through hundreds of endophytic microbial secretions for one that caused synergistic reduction in root expansion of the leaky AtcesA6prc1-1 mutant. We then mined this microbial secretion for compounds that were differentially abundant compared with Bacilli that failed to mimic CBI action to isolate a lead pharmacophore. Analogs of this lead compound were screened for CBI activity, and the most potent analog was named acetobixan. In living Arabidopsis cells visualized by confocal microscopy, acetobixan treatment caused CESA particles localized at the plasma membrane (PM) to rapidly re-localize to cytoplasmic vesicles. Acetobixan inhibited 14C-Glc uptake into crystalline cellulose. Moreover, cortical microtubule dynamics were not disrupted by acetobixan, suggesting specific activity towards cellulose synthesis. Previous CBI resistant mutants such as ixr1-2, ixr2-1 or aegeus were not cross resistant to acetobixan indicating that acetobixan targets a different aspect of cellulose biosynthesis.

References

[1]  Kwok TC, Ricker N, Fraser R, Chan AW, Burns A, et al. (2006) A small-molecule screen in C. elegans yields a new calcium channel antagonist. Nature 441: 91–95. doi: 10.1038/nature04657
[2]  Blackwell HW, Zhao Y (2003) Chemical genetic approaches to plant biology. Plant Physiology. 133: 448–455. doi: 10.1104/pp.103.031138
[3]  Rojas-Pierce M, Titapiwatanakun B, Sohn EJ, Fang F, Larive CK, et al. (2007) Arabidopsis p-glycoprotein19 participates in the inhibition of gravitropism by gravacin. Chemistry and Biology. 14: 1366–1376. doi: 10.1016/j.chembiol.2007.10.014
[4]  Bassel GW, Fung P, Chow TF, Foong JA, Provart NJ, et al. (2008) Elucidating the germination transcriptional program using small molecules. Plant Physiology. 147: 143–155. doi: 10.1104/pp.107.110841
[5]  Park S, Fung P, Nishimura N, Jensen DR, Fujii H, et al. (2009) Abscisic acid inhibits type 2C protein phosphatases via the PYR/PYL family of START proteins. Science 324: 1068–1071. doi: 10.1126/science.1173041
[6]  Santiago J, Dupeux F, Round A, Antoni R, Park S, et al. (2009) The abscisic acid receptor PYR1 in complex with abscisic acid. Nature 462: 665–668. doi: 10.1038/nature08591
[7]  Toth R, van der Hoorn RAL (2009) Emerging principles in plant chemical genetics. Trends in Plant Science. 15: 81–88. doi: 10.1016/j.tplants.2009.11.005
[8]  Ruegger M, Dewey E, Hobbie L, Brown D, Bernasconi P, et al. (1997) Reduced naphthylphthalamic acid binding in the tir3 mutant of Arabidopsis is associated with a reduction in polar auxin transport and diverse morphological defects. Plant Cell 9: 745–57. doi: 10.2307/3870429
[9]  Asami T, Min YK, Nagata N, Yamagishi K, Takatsuto S, et al. (2000) Characterization of brassinazole, a triazole-type brassinosteroid biosynthesis inhibitor. Plant Physiology. 123: 93–100. doi: 10.1104/pp.123.1.93
[10]  Gray WM, Kepinski S, Rouse D, Leyser O, Estelle M (2001) Auxin regulates SCF-TIR1-dependent degradation of AUX/IAA proteins. Nature 414: 271–276. doi: 10.1038/35104500
[11]  Armstrong JI, Yuan S, Dale JM, Tanner VN, Theologis A (2004) Identification of auxin transcriptional activation by means of chemical genetics in Arabidopsis. Proceedings of the National Academy of Science USA 101: 14978–14983. doi: 10.1073/pnas.0404312101
[12]  De Rybel B, Audenaert D, Vert G, Rozhon W, Mayerhofer J, et al. (2009) Chemical inhibition of a subset of Arabidopsis thaliana GSK3-like kinases activates brassinosteroid signaling. Chemistry and Biology. 16: 594–604. doi: 10.1016/j.chembiol.2009.04.008
[13]  Zouhar J, Hicks GR, Raikhel NV (2004) Sorting inhibitors (Sortins): Chemical compounds to study vacuolar sorting in Arabidopsis. Proceedings of the National Academy of Science USA. 101: 9497–9501. doi: 10.1073/pnas.0402121101
[14]  Surpin M, Rojas-Pierce M, Carter C, Hicks GR, Vasquez J, et al. (2005) The power of chemical genomics to study the link between endomembrane system components and the gravitropic response. Proceedings of the National Academy of Science USA. 102: 4902–4907. doi: 10.1073/pnas.0500222102
[15]  Drakakaki G, Robert S, Szatmari AM, Brown MQ, Nagawa S, et al. (2011) Clusters of bioactive compounds target dynamic endomembrane networks in vivo. Proceedings of the National Academy of Science USA. 108: 17850–17855. doi: 10.1073/pnas.1108581108
[16]  De Luca V, Salim V, Masada S, Yu F (2012) Mining the biodiversity of plants: A revolution in the making. Science 336: 1658–1661. doi: 10.1126/science.1217410
[17]  Brown RM (1986) The biosynthesis of cellulose. Journal of Macromolecule Science. 33 1345–1373. doi: 10.1080/10601329608014912
[18]  Arioli T, Peng L, Betzner AS, Burn J, Wittke W, et al. (1998) Molecular analysis of cellulose biosynthesis in Arabidopsis. Science 279: 717–720. doi: 10.1126/science.279.5351.717
[19]  Fagard M, Desnos T, Desprez T, Goubet F, Refregier G, et al. (2000) PROCUSTE1 encodes a cellulose synthase required for normal cell elongation specifically in roots and dark-grown hypocotyls of Arabidopsis. Plant Cell 12: 2409–2423. doi: 10.2307/3871238
[20]  Desprez T, Juraniec M, Crowell EF, Jouy H, Pochylova Z, et al. (2007) Organization of cellulose synthase complexes involved in primary cell wall synthesis in Arabidopsis thaliana. Proceedings of the National Academy of Science USA 104: 15572–15577. doi: 10.1073/pnas.0706569104
[21]  Persson S, Paredez A, Carroll A, Palsdottir H, Doblin M, et al. (2007) Genetic evidence for three unique components in primary cell wall cellulose synthase complexes in Arabidopsis. Proceedings of the National Academy of Science USA 104: 15566–15571. doi: 10.1073/pnas.0706592104
[22]  Montezinos D, Delmer DP (1980) Characterization of inhibitors of cellulose synthesis in cotton fibers. Planta 148: 305–311. doi: 10.1007/bf00388116
[23]  Heim DR, Roberts JL, Pike PD, Larrinua IM (1989) Mutations of a locus of Arabidopsis thaliana confer resistance to the herbicide isoxaben. Plant Physiology 90: 146–150. doi: 10.1104/pp.90.1.146
[24]  Heim DR, Skomp JR, Tschadbold EE, Larrinua IM (1990) Isoxaben inhibits the synthesis of acid-insoluble cell wall materials in Arabidopsis thaliana. Plant Physiology. 93: 695–700. doi: 10.1104/pp.93.2.695
[25]  Peng L, Xiang F, Roberts E, Kawagoe Y, Greve LC, et al. (2001) The experimental herbicide CGA 325'615 inhibits synthesis of crystalline cellulose and causes accumulation of non-crystalline beta-1,4-glucan associated with CesA protein. Plant Physiology 126: 981–992. doi: 10.1104/pp.126.3.981
[26]  Kiedaisch B, Blanton RL, Haigler CH (2003) Characterization of a novel cellulose synthesis inhibitor. Planta 217: 922–930. doi: 10.1007/s00425-003-1071-y
[27]  Scheible WR, Fry B, Kochevenko A, Schindelasch D, Zimmerli L, et al. (2003) An Arabidopsis mutant resistant to thaxtomin A, a cellulose synthesis inhibitor from Streptomyces species. Plant Cell 15: 1781–1794. doi: 10.1105/tpc.013342
[28]  Harris DM, Corbin K, Wang T, Gutierrez R, Bertolo AL, et al. (2012) Cellulose microfibril crystallinity is reduced by mutating C-terminal transmembrane region residues CESA1 A903V and CESA3 T942I of cellulose synthase. Proceedings of the National Academy of Science USA 109: 4098–4103. doi: 10.1073/pnas.1200352109
[29]  Doumbou CL, Akimov VV, Beaulieu C (1998) Selection and characterization of microorganisms utilizing thaxtomin A, a phytotoxin produced by Streptomyces scabies. Applied and Environmental Microbiology. 64: 4313–4316.
[30]  Kinkel LL, Bowers JH, Shimizu K, Neeno-Eckwall EC, Schottel JL (1998) Quantitative relationships among thaxtomin A production, potato scab severity, and fatty acid composition in Streptomyces. Canadian Journal of Microbiology. 44: 768–776. doi: 10.1139/cjm-44-8-768
[31]  Paredez AR, Somerville CR, Ehrhardt DW (2006) Visualization of cellulose synthase demonstrates functional association with microtubules. Science 312: 1491–1495. doi: 10.1126/science.1126551
[32]  Crowell EF, Bischoff V, Desprez T, Rolland A, Stierhof Y, et al. (2009) Pausing of Golgi bodies on microtubules regulates secretion of cellulose synthase complexes in Arabidopsis. Plant Cell 21: 1141–1154. doi: 10.1105/tpc.108.065334
[33]  Gutierrez R, Lindeboom JJ, Paredez AR, Emons AMC, Ehrhard DW (2009) Arabidopsis cortical microtubules position cellulose synthase delivery to the plasma membrane and interact with cellulose synthase trafficking compartments. Nature Cell Biology 11: 797–806. doi: 10.1038/ncb1886
[34]  Scheible WR, Esched R, Richmond T, Delmer D, Somerville C (2001) Modifications of cellulose synthase confer resistance to isoxaben and thiazolidinone herbicides in Arabidopsis ixr1 mutants. Proceedings of the National Academy of Science USA 98: 10079–10084. doi: 10.1073/pnas.191361598
[35]  DeBolt S, Gutierrez R, Ehrhardt DW, Somerville C (2007) Nonmotile cellulose synthase subunits repeatedly accumulate within localized regions at the plasma membrane in Arabidopsis hypocotyls cells following 2,6-dicholobenzonitrile treatment. Plant Physiology 145: 334–338. doi: 10.1104/pp.107.104703
[36]  Desprez T, Vernhettes S, Fagard M, Refregier G, Desnos T, et al. (2002) Resistance against herbicide isoxaben and cellulose deficiency caused by distinct mutations in same cellulose synthase isoform CesA6. Plant Physiology 128: 482–490. doi: 10.1104/pp.010822
[37]  Morgan JL, Strumillo J, Zimmer J (2013) Crystallographic snapshot of cellulose synthesis and membrane translocation. Nature 493: 181–186. doi: 10.1038/nature11744
[38]  Xia Y, Greissworth E, Mucci C, Williams MA, DeBolt S (2012) Characterization of culturable bacterial endophytes of switchgrass (Panicum virgatum L.) and their capacity to effect plant growth. GCB Bioenergy 5: 674–682. doi: 10.1111/j.1757-1707.2012.01208.x
[39]  Reddy GS, Aggarwal RK, Matsumoto GI, Shivaji S (2000) Arthrobacter flavus sp. nov., a psychrophilic bacterium isolated from a pond in McMurdo Dry Valley, Antarctica. International Journal of Systematic and Evolutionary Microbiology. 50: 1553–1561. doi: 10.1099/00207713-50-4-1553
[40]  Devulder G, Perriere G, Baty F, Flandrois JP (2003) BIBI, a bioinformatics bacterial identification tool. Journal of Clinical Microbiology 41: 1785–1787. doi: 10.1128/jcm.41.4.1785-1787.2003
[41]  Mignard S, Flandrois JP (2006) 16S rRNA sequencing in routine bacterial identification: a 30-month experiment. Journal of Microbiology Methods 67: 574–581. doi: 10.1016/j.mimet.2006.05.009
[42]  Cutler SR, Ehrhardt DW, Griffitts JS, Somerville CR (2000) Random GFP::cDNA fusions enable visualization of subcellular structures in cells of Arabidopsis at a high frequency. Proceedings of the National Academy of Science USA 97: 3718–3723. doi: 10.1073/pnas.97.7.3718
[43]  Updegraff DM (1969) Semimicro determination of cellulose in biological materials. Analytical Biochemistry. 32: 420–424. doi: 10.1016/s0003-2697(69)80009-6
[44]  Sturz AV, Christie BR, Nowak J (2000) Bacterial endophytes: potential role in developing sustainable systems of crop production. Critical Reviews in Plant Science. 19: 1–30. doi: 10.1080/07352680091139169
[45]  Fagard M (1999) Analyse physiologique et moleculaire du mutant procuste1 d'Arabidopsis thaliana affecte dans l'elongation cellulaire. PhD thesis. Paris-Sud Orsay.
[46]  Sabba RP, Vaughn KC (1999) Herbicides that inhibit cellulose biosynthesis. Weed Science 14: 757–763.
[47]  Brabham C, DeBolt S (2013) Chemical genetics to examine cellulose biosynthesis. Frontiers in Plant Science 3: 309. doi: 10.3389/fpls.2012.00309
[48]  Jarvis M (2013) Cellulose Biosynthesis: Counting the Chains. Plant Physiology 163 1485–1486. doi: 10.1104/pp.113.231092
[49]  Lane DR, Wiedemeier A, Peng L, H?fte H, Vernhettes S, et al. (2001) Temperature sensitive alleles of RSW2 link the KORRIGAN endo-1,4-β-glucanase to cellulose synthesis and cytokinesis in Arabidopsis thaliana. Plant Physiology 126: 278–288. doi: 10.1104/pp.126.1.278
[50]  Lei L, Li S, Gu Y (2012) Cellulose synthase interactive protein 1 (CSI1) mediates the intimate relationship between cellulose microfibrils and cortical microtubules. Plant Signaling and Behavior 7: 1–5. doi: 10.4161/psb.20338
[51]  Roudier F, Fernandez AG, Fujita M, Himmelspach R, Borner GHH, et al. (2005) COBRA, an Arabidopsis extracellular glycosyl-phosphatidylinositol-anchored protein, specifically controls highly anisotropic expansion through its involvement in cellulose microfibril orientation. Plant Cell 17 1749–1763. doi: 10.1105/tpc.105.031732
[52]  Tsekos I (1999) The sites of cellulose synthesis in algae: Diversity and evolution of cellulose-synthesizing enzyme complexes. Journal of Phycology 35: 635–655. doi: 10.1046/j.1529-8817.1999.3540635.x
[53]  Sethaphong L, Haigler CH, Kubicki JD, Zimmer J, Bonetta D, et al. (2013) Tertiary model of a plant cellulose synthase. Proceedings of the National Academy of Science USA 110 7512–7517. doi: 10.1073/pnas.1301027110
[54]  Paredez AR, Persson S, Ehrhardt DW, Somerville CR (2008) Genetic evidence that cellulose synthase activity influences microtubule cortical array organization. Plant Physiology 147(4) 1723–34. doi: 10.1104/pp.108.120196
[55]  Sampathkumar A, Gutierrez R, McFarlane HE, Bringmann M, Lindeboom J, et al. (2013) Patterning and life-time of plasma membrane localized cellulose synthase is dependent on actin organization in Arabidopsis interphase cells. Plant Physiology 162: 675–668. doi: 10.1104/pp.113.215277
[56]  Bringmann M, Li E, Sampathkumar A, Kocabek T, Hauser M-T, et al. (2012) POM-POM2/CELLULOSE SYNTHASE INTERACTING1 is essential for the functional association of cellulose synthase and microtubules in Arabidopsis. Plant Cell 24 163–177. doi: 10.1105/tpc.111.093575
[57]  Bischoff V, Cookson SJ, Wu S, Scheible WR (2009) Thaxtomin A affects CesA-complex density, expression of cell wall genes, cell wall composition, and causes ectopic lignification in Arabidopsis thaliana seedlings. Journal of Experimental Botany 60: 955–965. doi: 10.1093/jxb/ern344
[58]  Moreno-Hagelsieb G, Jokic P (2012) The evolutionary dynamics of functional modules and the extraordinary plasticity of regulons: the Escherichia coli perspective. Nucleic Acids Research 40: 7104–7112. doi: 10.1093/nar/gks443
[59]  Zhang H, Yin Y, Olman V, Xu Y (2012) Genomic arrangement of regulons in bacterial genomes. PLoS ONE 7: e29496. doi: 10.1371/journal.pone.0029496
[60]  Touchon M, Hoede C, Tenaillon O, Barbe V, Baeriswyl S, et al. (2009) Organised Genome Dynamics in the Escherichia coli Species Results in Highly Diverse Adaptive Paths. PLoS Genet 5(1): e1000344 doi:10.1371/journal.pgen.1000344.
[61]  Lukjancenko O, Wassenaar TM, Ussery DW (2010) Comparison of 61 sequenced Escherichia coli genomes. Microbial Ecology 60: 708–720. doi: 10.1007/s00248-010-9717-3
[62]  Koehn FE, Carter GT (2005) The evolving role of natural products in drug discovery. Nature Review Drug Discovery 4: 206–220. doi: 10.1038/nrd1657
[63]  Nicholson WL, Munakata N, Horneck G, Melosh HJ, Setlow P (2000) Resistance of bacterial endospores to extreme terrestrial and extraterrestrial environments. Molecular Biology Review. 64: 548–572. doi: 10.1128/mmbr.64.3.548-572.2000
[64]  Ki JS, Zhang W, Qian PY (2009) Discovery of marine Bacillus species by 16S rRNA and rpoB comparisons and their usefulness for species identification. Journal of Microbiology Methods 77: 48–57. doi: 10.1016/j.mimet.2009.01.003
[65]  Olivares FL, Baldani VLD, Reis VM, Baldani JI, Dobereiner J (1996) Occurrence of the endophytic diazotrophs Herbaspirillum spp. In roots, stems, and leaves, predominantly of Gramineae. Biology and Fertility of Soils 21: 197–200. doi: 10.1007/bf00335935
[66]  Pillay VK, Nowak J (1997) Inoculum density, temperature, and genotype effects on in vitro growth promotion and epiphytic and endophytic colonization of tomato (Lycopersicon esculentum L.) seedlings inoculated with a pseudomonal bacterium. Canadian Journal of Microbiology 43: 354–361. doi: 10.1139/m97-049
[67]  Siciliano SD, Germida JJ (1999) Taxonomic diversity of bacteria associated with the roots of field-grown transgenic Brassica napus cv. Quest compared to the non-transgenic B. napus cv. Excel and B. rap acv. Parkland. FEMS Microbiology Ecology 29 263–272. doi: 10.1111/j.1574-6941.1999.tb00617.x
[68]  Sessitsch A, Reiter B, Berg G (2004) Endophytic bacterial communities of field-grown potato plants and their plant-growth-promoting and antagonistic abilities. Canadian Journal of Microbiology 50: 239–249. doi: 10.1139/w03-118
[69]  Hardoim PR, van Overbeek LS, van Elsas JD (2008) Properties of bacterial endophytes and their proposed role in plant growth. Trend Microbiology 16: 463–471. doi: 10.1016/j.tim.2008.07.008
[70]  Lundberg DS, Lebeis SL, Paredes SH, Yourstone S, Gehring J, et al. (2012) Defining the core Arabidopsis thaliana root microbiome. Nature 488: 86–90. doi: 10.1038/nature11237
[71]  Sansinenea E, Ortiz A (2011) Secondary metabolites of soil Bacillus spp. Biotechnology Letters 33: 1523–1538. doi: 10.1007/s10529-011-0617-5

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133