Orexin-A is an important neuropeptide involved in the regulation of feeding, arousal, energy consuming, and reward seeking in the body. The effects of orexin-A have widely studied in neurons but not in astrocytes. Here, we report that OX1R and OX2R are expressed in cultured rat astrocytes. Orexin-A stimulated the phosphorylation of extracellular signal-regulated kinase 1/2 (ERK1/2), and then induced the migration of astrocytes via its receptor OX1R but not OX2R. Orexin-A-induced ERK1/2 phosphorylation and astrocytes migration are Ca2+-dependent, since they could be inhibited by either chelating the extracellular Ca2+ or blocking the pathway of store-operated calcium entry (SOCE). Furthermore, both non-selective protein kinase C (PKC) inhibitor and PKCα selective inhibitor, but not PKCδ inhibitor, prevented the increase in ERK1/2 phosphorylation and the migration of astrocytes, indicating that the Ca2+-dependent PKCα acts as the downstream of the OX1R activation and mediates the orexin-A-induced increase in ERK1/2 phosphorylation and cell migration. In conclusion, these results suggest that orexin-A can stimulate ERK1/2 phosphorylation and then facilitate the migration of astrocytes via PLC-PKCα signal pathway, providing new knowledge about the functions of the OX1R in astrocytes.
References
[1]
Sakurai T, Amemiya A, Ishii M, Matsuzaki I, Chemelli RM, et al. (1998) Orexins and orexin receptors: a family of hypothalamic neuropeptides and G protein-coupled receptors that regulate feeding behavior. Cell 92: 573–585. doi: 10.1016/s0092-8674(00)80949-6
[2]
De Lecea L, Kilduff TS, Peyron C, Gao X, Foye PE, et al. (1998) The hypocretins: hypothalamus-specific peptides with neuroexcitatory activity. Proc Natl Acad Sci U S A 95: 322–327. doi: 10.1073/pnas.95.1.322
[3]
Sakurai T, Moriguchi T, Furuya K, Kajiwara N, Nakamura T, et al. (1999) Structure and function of human prepro-orexin gene. J Biol Chem 274: 17771–17776. doi: 10.1074/jbc.274.25.17771
[4]
Trivedi P, Yu H, MacNeil DJ, Van der Ploeg LH, Guan XM (1998) Distribution of orexin receptor mRNA in the rat brain. FEBS Lett 438: 71–75. doi: 10.1016/s0014-5793(98)01266-6
[5]
Tsujino N, Sakurai T (2009) Orexin/hypocretin: a neuropeptide at the interface of sleep, energy homeostasis, and reward system. Pharmacol Rev 61: 162–176. doi: 10.1124/pr.109.001321
[6]
Smart D, Jerman JC, Brough SJ, Rushton SL, Murdock PR, et al. (1999) Characterization of recombinant human orexin receptor pharmacology in a Chinese hamster ovary cell-line using FLIPR. Br J Pharmacol 128: 1–3. doi: 10.1038/sj.bjp.0702780
[7]
Kane JK, Tanaka H, Parker SL, Yanagisawa M, Li MD (2000) Sensitivity of orexin-A binding to phospholipase C inhibitors, neuropeptide Y, and secretin. Biochem Biophys Res Commun 272: 959–965. doi: 10.1006/bbrc.2000.2880
[8]
Allen NJ, Bennett ML, Foo LC, Wang GX, Chakraborty C, et al. (2012) Astrocyte glypicans 4 and 6 promote formation of excitatory synapses via GluA1 AMPA receptors. Nature 486: 410–414. doi: 10.1038/nature11059
[9]
Woldan-Tambor A, Bieganska K, Wiktorowska-Owczarek A, Zawilska JB (2011) Activation of orexin/hypocretin type 1 receptors stimulates cAMP synthesis in primary cultures of rat astrocytes. Pharmacol Rep 63: 717–723. doi: 10.1016/s1734-1140(11)70583-7
[10]
Skrzypski M, Kaczmarek P, Le TT, Wojciechowicz T, Pruszynska-Oszmalek E, et al. (2012) Effects of orexin A on proliferation, survival, apoptosis and differentiation of 3T3-L1 preadipocytes into mature adipocytes. FEBS Lett 586: 4157–4164. doi: 10.1016/j.febslet.2012.10.013
[11]
Duguay D, Belanger-Nelson E, Mongrain V, Beben A, Khatchadourian A, et al. (2011) Dynein light chain Tctex-type 1 modulates orexin signaling through its interaction with orexin 1 receptor. PLoS One 6: e26430 doi:10.1371.
[12]
Tsai HW, Hsieh HL, Yang CM (2008) Bradykinin induces matrix metalloproteinase-9 expression and cell migration through a PKC-delta-dependent ERK/Elk-1 pathway in astrocytes. J Neuropathol Exp Neurol 67: 516–516. doi: 10.1002/glia.20637
[13]
Kim MK, Park HJ, Kim SR, Choi YK, Shin HK, et al. (2010) Angiogenic role of orexin-A via the activation of extracellular signal-regulated kinase in endothelial cells. Biochem Biophys Res Commun 403: 59–65. doi: 10.1016/j.bbrc.2010.10.115
[14]
Ramanjaneya M, Conner AC, Chen J, Kumar P, Brown JEP, et al. (2009) Orexin-stimulated MAP kinase cascades are activated through multiple G-protein signalling pathways in human H295R adrenocortical cells: diverse roles for orexins A and B. J ENDOCRINOL 202: 249–261. doi: 10.1677/joe-08-0536
[15]
Huang C, Hu ZL, Wu WN, Yu DF, Xiong QJ, et al. (2010) Existence and Distinction of Acid-Evoked Currents in Rat Astrocytes. Glia 58: 1415–1424.
[16]
Ekholm ME, Johansson L, Kukkonen JP (2007) IP3-independent signalling of OX1 orexin/hypocretin receptors to Ca2+ influx and ERK. Biochem Biophys Res Commun 353: 475–480. doi: 10.1016/j.bbrc.2006.12.045
[17]
Albert AP, Saleh SN, Peppiatt-Wildman CM, Large WA (2007) Multiple activation mechanisms of store-operated TRPC channels in smooth muscle cells. J Physiol 583: 25–36. doi: 10.1113/jphysiol.2007.137802
[18]
Huang C, Wu J, Liao R, Zhang W (2012) SKF83959, an agonist of phosphatidylinositol-linked D(1)-like receptors, promotes ERK1/2 activation and cell migration in cultured rat astrocytes. PLoS One 7: e49954. doi: 10.1371/journal.pone.0049954
[19]
Sakurai T, Amemiya A, Ishii M, Matsuzaki I, Chemelli RM, et al.. (1998) Orexins and orexin receptors: a family of hypothalamic neuropeptides and G protein-coupled receptors that regulate feeding behavior. Cell 92 : 1 573–585.
[20]
Tsunematsu T, Tabuchi S, Tanaka KF, Boyden ES, Tominaga M, et al. (2013) Long-lasting silencing of orexin/hypocretin neurons using archaerhodopsin induces slow-wave sleep in mice. Behav Brain Res 255: 64–74. doi: 10.1016/j.bbr.2013.05.021
[21]
Girault EM, Yi CX, Fliers E, Kalsbeek A (2012) Orexins, feeding, and energy balance. Prog Brain Res 198: 47–64. doi: 10.1016/b978-0-444-59489-1.00005-7
[22]
Mikrouli E, Wortwein G, Soylu R, Mathe AA, Petersen A (2011) Increased numbers of orexin/hypocretin neurons in a genetic rat depression model. Neuropeptides 45: 401–406. doi: 10.1016/j.npep.2011.07.010
[23]
Yong VW, Power C, Forsyth P, Edwards DR (2001) Metalloproteinases in biology and pathology of the nervous system. Nat Rev Neurosci 2: 502–511. doi: 10.1038/35081571
[24]
Hsieh HL, Yen MH, Jou MJ, Yang CM (2004) Intracellular signalings underlying bradykinin-induced matrix metalloproteinase-9 expression in rat brain astrocyte-1. Cell Signal 16: 1163–1176. doi: 10.1016/j.cellsig.2004.03.021
[25]
Hsieh HL, Wang HH, Wu WB, Chu PJ, Yang CM (2010) Transforming growth factor-beta1 induces matrix metalloproteinase-9 and cell migration in astrocytes: roles of ROS-dependent ERK- and JNK-NF-kappaB pathways. J Neuroinflammation 7: 88. doi: 10.1186/1742-2094-7-88
[26]
Stella N (2010) Cannabinoid and cannabinoid-like receptors in microglia, astrocytes, and astrocytomas. Glia 58: 1017–1030. doi: 10.1002/glia.20983
[27]
Shin HS, Cho HS, Sung KW, Yoon BJ (2009) Orexin-A increases cell surface expression of AMPA receptors in the striatum. Biochem Biophys Res Commun 378: 409–413. doi: 10.1016/j.bbrc.2008.11.051
[28]
Ammoun S, Johansson L, Ekholm ME, Holmqvist T, Danis AS, et al. (2006) OX1 orexin receptors activate extracellular signal-regulated kinase in Chinese hamster ovary cells via multiple mechanisms: the role of Ca2+ influx in OX1 receptor signaling. Mol Endocrinol 20: 80–99. doi: 10.1210/me.2004-0389
[29]
Hu L, Xia L, Zhou H, Wu B, Mu Y, et al. (2013) TF/FVIIa/PAR2 promotes cell proliferation and migration via PKCalpha and ERK-dependent c-Jun/AP-1 pathway in colon cancer cell line SW620. Tumour Biol 34: 2573–81. doi: 10.1007/s13277-013-0803-2
[30]
Ikeda Y, Miura T, Sakamoto J, Miki T, Tanno M, et al. (2006) Activation of ERK and suppression of calcineurin are interacting mechanisms of cardioprotection afforded by delta-opioid receptor activation. Basic Research in Cardiology 101: 418–426. doi: 10.1007/s00395-006-0595-2
[31]
Feske S, Okamura H, Hogan PG, Rao A (2003) Ca2+/calcineurin signalling in cells of the immune system. Biochem Biophys Res Commun 311: 1117–1132. doi: 10.1016/j.bbrc.2003.09.174
[32]
Aires V, Hichami A, Filomenko R, Ple A, Rebe C, et al. (2007) Docosahexaenoic acid induces increases in [Ca2+]i via inositol 1,4,5-triphosphate production and activates protein kinase C gamma and -delta via phosphatidylserine binding site: implication in apoptosis in U937 cells. Mol Pharmacol 72: 1545–1556. doi: 10.1124/mol.107.039792
[33]
Zhang WM, Yip KP, Lin MJ, Shimoda LA, Li WH, et al. (2003) ET-1 activates Ca2+ sparks in PASMC: local Ca2+ signaling between inositol trisphosphate and ryanodine receptors. AM J PHYSIOL-LUNG 285: L680–L690.
[34]
Johansson L, Ekholm ME, Kukkonen JP (2007) Regulation of OX1 orexin/hypocretin receptor-coupling to phospholipase C by Ca2+ influx. Br J Pharmacol 150: 97–104. doi: 10.1038/sj.bjp.0706959
[35]
Blom T, Slotte JP, Pitson SM, Tornquist K (2005) Enhancement of intracellular sphingosine-1-phosphate production by inositol 1,4,5-trisphosphate-evoked calcium mobilisation in HEK-293 cells: endogenous sphingosine-1-phosphate as a modulator of the calcium response. Cell Signal 17: 827–836. doi: 10.1016/j.cellsig.2004.11.022
[36]
Rychkov GY, Litjens T, Roberts ML, Barritt GJ (2005) ATP and vasopressin activate a single type of store-operated Ca2+ channel, identified by patch-clamp recording, in rat hepatocytes. Cell Calcium 37: 183–191. doi: 10.1016/j.ceca.2004.09.001
[37]
Zhou JR, Zhang LD, Wei HF, Wang X, Ni HL, et al. (2013) Neuropeptide Y induces secretion of high-mobility group box 1 protein in mouse macrophage via PKC/ERK dependent pathway. J Neuroimmunol 260: 55–9 doi:10.1016.