全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS ONE  2014 

Temperature Gradient Measurements by Using Thermoelectric Effect in CNTs-Silicone Adhesive Composite

DOI: 10.1371/journal.pone.0095287

Full-Text   Cite this paper   Add to My Lib

Abstract:

This work presents the fabrication and investigation of thermoelectric cells based on composite of carbon nanotubes (CNT) and silicone adhesive. The composite contains CNT and silicon adhesive 1:1 by weight. The current-voltage characteristics and dependences of voltage, current and Seebeck coefficient on the temperature gradient of cell were studied. It was observed that with increase in temperature gradient the open circuit voltage, short circuit current and the Seebeck coefficient of the cells increase. Approximately 7 times increase in temperature gradient increases the open circuit voltage and short circuit current up to 40 and 5 times, respectively. The simulation of experimental results is also carried out; the simulated results are well matched with experimental results.

References

[1]  Dresselhaus MS, Chen G, Tang MY, Yang RG, Lee H, et al. (2007) New Directions for Low-Dimensional Thermoelectric Materials. Adv. Mater. 19: 1043–1053. doi: 10.1002/adma.200600527
[2]  Ondersma JW, Hamann TW (2013) Recombination and redox couples in dye-sensitized solar cells. Coord. Chem. Rev. 257: 1533–1543.
[3]  Panda MK, Ladomenou K, Coutsolelos AG (2012) Porphyrins in bio-inspired transformations: Light-harvesting to solar cell. Coord. Chem. Rev. 256: 2601–2627.
[4]  Snyder GJ, Toberer ES (2008) Complex thermoelectric materials. Nat. Mater. 7: 105–114. doi: 10.1038/nmat2090
[5]  Alam H, Ramakrishna S (2013) A review on the enhancement of figure of merit from bulk to nano-thermoelectric materials. Nano Energy 2: 190–212. doi: 10.1016/j.nanoen.2012.10.005
[6]  Hamid Elsheikh M, Shnawah DA, Sabri MFM, Said SBM, Haji Hassan M, et al. (2014) A review on thermoelectric renewable energy: Principle parameters that affect their performance. Renewable Sustainable Energy Rev. 30: 337–355. doi: 10.1016/j.rser.2013.10.027
[7]  Choi Y, Kim Y, Park S-G, Kim Y-G, Sung BJ, et al. (2011) Effect of the carbon nanotube type on the thermoelectric properties of CNT/Nafion nanocomposites. Org. Electron. 12: 2120–2125. doi: 10.1016/j.orgel.2011.08.025
[8]  Bell LE (2008) Cooling, Heating, Generating Power, and Recovering Waste Heat with Thermoelectric Systems. Science 321: 1457–1461. doi: 10.1126/science.1158899
[9]  L.E S (2008) Anisotropic thermoelectric materials for thermoelectric generators based on layered chalcogenides. Perspective Mater. 2: 28–38.
[10]  Walia S, Weber R, Sriram S, Bhaskaran M, Latham K, et al. (2011) Sb2Te3 and Bi2Te3 based thermopower wave sources. Energy Environ. Sci. 4: 3558–3564. doi: 10.1039/c1ee01370j
[11]  Papadopoulos CA, Vlachos DS, Avaritsiotis JN (1996) A new planar device based on Seebeck effect for gas sensing applications. Sens. Actuators, B 34: 524–527. doi: 10.1016/s0925-4005(97)80022-6
[12]  Bass JC, Elsner N, Ghamaty S, Jovanovic V, Krommenhoek D High efficient quantum well thermoelectric for waste heat power generation. San Diego, CA 92126: Hi-Z Technology, Inc.
[13]  Al khalfioui M, Michez A, Giani A, Boyer A, Foucaran A (2003) Anemometer based on Seebeck effect. Sens. Actuators, A 107: 36–41. doi: 10.1016/s0924-4247(03)00294-2
[14]  Walia S, Balendhran S, Nili H, Zhuiykov S, Rosengarten G, et al. (2013) Transition metal oxides – Thermoelectric properties. Prog. Mater Sci. 58: 1443–1489. doi: 10.1016/j.pmatsci.2013.06.003
[15]  Walia S, Balendhran S, Yi P, Yao D, Zhuiykov S, et al. (2013) MnO2-Based Thermopower Wave Sources with Exceptionally Large Output Voltages. J. Phys. Chem. C 117: 9137–9142. doi: 10.1021/jp401731b
[16]  Walia S, Weber R, Balendhran S, Yao D, Abrahamson JT, et al. (2012) ZnO based thermopower wave sources. Chem. Commun. 48: 7462–7464. doi: 10.1039/c2cc33146b
[17]  Sumino M, Harada K, Ikeda M, Tanaka S, Miyazaki K, et al. (2011) Thermoelectric properties of n-type C60 thin films and their application in organic thermovoltaic devices. Appl. Phys. Lett. 99: 093308–093301-093303. doi: 10.1063/1.3631633
[18]  Minnich AJ, Dresselhaus MS, Ren ZF, Chen G (2009) Bulk nanostructured thermoelectric materials: current research and future prospects. Energy Environ. Sci. 2: 466–479. doi: 10.1039/b822664b
[19]  Sun K (2008) Charge transport in organic/semiconductor quantum dot ensembles and phonon scattering in carbon nanotubes [Ph.D.]. Ann Arbor: University of Illinois at Chicago. 138 p.
[20]  Zhao W, Fan S, Xiao N, Liu D, Tay YY, et al. (2012) Flexible carbon nanotube papers with improved thermoelectric properties. Energy Environ. Sci. 5: 5364–5369. doi: 10.1039/c1ee01931g
[21]  Tan XJ, Liu HJ, Wen YW, Lv HY, Pan L, et al. (2011) Thermoelectric Properties of Ultrasmall Single-Wall Carbon Nanotubes. J. Phys. Chem. C 115: 21996–22001. doi: 10.1021/jp205333m
[22]  Zhan G-D, Mukherjee AK (2005) Processing and Characterization of Nanoceramic Composites with Interesting Structural and Functional Properties. Rev. Adv. Mater. Sci. 10: 185–196.
[23]  Meng C, Liu C, Fan S (2010) A Promising Approach to Enhanced Thermoelectric Properties Using Carbon Nanotube Networks. Adv. Mater. 22: 535–539. doi: 10.1002/adma.200902221
[24]  Bandaru PR (2007) Electrical Properties and Applications of Carbon Nanotube Structures. J. Nanosci. Nanotechnol. 7: 1239–1267. doi: 10.1166/jnn.2007.307
[25]  Cutler M, Leavy JF (1964) Electronic Transport in High-Resistivity Cerium Sulfide. Phys. Rev. 133: A1153–A1162. doi: 10.1103/physrev.133.a1153
[26]  Grow RJ, Wang Q, Cao J, Wang D, Dai H (2005) Piezoresistance of carbon nanotubes on deformable thin-film membranes. Appl. Phys. Lett. 86: 093104–093101-093103. doi: 10.1063/1.1872221
[27]  Bottger H, Bryksin VV (1985) Hopping conduction in solids. VCH, Deerfield Beach, FL.
[28]  Brabec C, V. Dyakonov JPaNS (2003) Organic Photovoltaics: Concepts and Realization. Berlin Heidelberg: Springer-Verlag.
[29]  Karimov KS (1994) Electrophysical properties of low-dimensional organic materials at deformation. Tashkent: Academy of Sciences of the Republic of Uzbekistan.
[30]  Croft A, Croft T, Davison R, Hargreaves M (1992) Engineering mathematics: a modern foundation for electronic, electrical, and control engineers: Addison-Wesley.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133