全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS ONE  2014 

Analysis of Volatile Compounds in Exhaled Breath Condensate in Patients with Severe Pulmonary Arterial Hypertension

DOI: 10.1371/journal.pone.0095331

Full-Text   Cite this paper   Add to My Lib

Abstract:

Background An important challenge to pulmonary arterial hypertension (PAH) diagnosis and treatment is early detection of occult pulmonary vascular pathology. Symptoms are frequently confused with other disease entities that lead to inappropriate interventions and allow for progression to advanced states of disease. There is a significant need to develop new markers for early disease detection and management of PAH. Methodolgy and Findings Exhaled breath condensate (EBC) samples were compared from 30 age-matched normal healthy individuals and 27 New York Heart Association functional class III and IV idiopathic pulmonary arterial hypertenion (IPAH) patients, a subgroup of PAH. Volatile organic compounds (VOC) in EBC samples were analyzed using gas chromatography/mass spectrometry (GC/MS). Individual peaks in GC profiles were identified in both groups and correlated with pulmonary hemodynamic and clinical endpoints in the IPAH group. Additionally, GC/MS data were analyzed using autoregression followed by partial least squares regression (AR/PLSR) analysis to discriminate between the IPAH and control groups. After correcting for medicaitons, there were 62 unique compounds in the control group, 32 unique compounds in the IPAH group, and 14 in-common compounds between groups. Peak-by-peak analysis of GC profiles of IPAH group EBC samples identified 6 compounds significantly correlated with pulmonary hemodynamic variables important in IPAH diagnosis. AR/PLSR analysis of GC/MS data resulted in a distinct and identifiable metabolic signature for IPAH patients. Conclusions These findings indicate the utility of EBC VOC analysis to discriminate between severe IPAH and a healthy population; additionally, we identified potential novel biomarkers that correlated with IPAH pulmonary hemodynamic variables that may be important in screening for less severe forms IPAH.

References

[1]  Alfaro MF, Walby WF, Adams WC, Schelegle ES (2007) Breath condensate levels of 8-isoprostane and leukotriene B4 after ozone inhalation are greater in sensitive versus nonsensitive subjects. Exp Lung Res 33: 115–133. doi: 10.1080/01902140701364367
[2]  Carpagnano GE, Resta O, Gelardi M, Spanevello A, Di Gioia G, et al. (2007) Exhaled inflammatory markers in aspirin-induced asthma syndrome. Am J Rhinology 21(5): 542–547. doi: 10.2500/ajr.2007.21.3066
[3]  Conrad DH, Goyette J, Thomas PS (2008) Proteomics as a method for early detection of cancer: a review of proteomics, exhaled breath condensate, and lung cancer screening. J Gen Int Med (suppl 1): 78–84.
[4]  Phillips M, Altorki N, Austin J, Cameron RB, Cataneo RN, et al. (2007) Prediction of lung cancer using volatile biomarkers in breath. Cancer Biomarkers 3(2): 95–109.
[5]  O'Reilly P, Bailey W (2007) Clinical use of exhaled biomarkers in COPD. Int J Chron Obstr Pulm Dis 2: 403–408.
[6]  Phillips M, Cataneo RN, Condos R, Ring Erickson GA, Greenberg J, et al. (2007) Volatile biomarkers of pulmonary tuberculosis in the breath. Tuberculosis 87(1): 44–52. doi: 10.1016/j.tube.2006.03.004
[7]  Van Muylem A, Knoop C, Estenne M (2007) Early detection of chronic pulmonary allograft dysfunction by exhaled biomarkers. Am J Respir Crit Care Med 175(7): 731–736. doi: 10.1164/rccm.200609-1301oc
[8]  Phillips M, Cataneo RN, Ditkoff BA, Fisher P, Greenberg J, et al. (2006) Prediction of breast cancer using volatile biomarkers in the breath. Breast Cancer Res and Treat 99(1): 19–21. doi: 10.1007/s10549-006-9176-1
[9]  Phillips M, Boehmer JP, Cataneo RN, Cheema T, Eisen HJ, et al. (2004) Prediction of heart transplant rejection with a breath test for markers of oxidative stress. Am J Cardio 94(12): 1593–1594. doi: 10.1016/j.amjcard.2004.08.052
[10]  Phillips M, Cataneo RN, Cheema T, Greenberg J (2004) Increased breath biomarkers of oxidative stress in diabetes mellitus. Clinica Chimica Acta 344(1–2): 189–194. doi: 10.1016/j.cccn.2004.02.025
[11]  Phillips M, Cataneo RN, Greenberg J, Grodman R, Salazar M (2003) Breath markers of oxidative stress in patients with unstable angina. Heart Disease 5(2): 95–99. doi: 10.1097/01.hdx.0000061701.99611.e8
[12]  Mansoor JK, Morrissey BM, Walby WF, Yoneda KY, Juarez M, et al. (2005) L-arginine supplementation enhances exhaled NO, breath condensate VEGF, and headache at 4,342 m. High Alt Med Biol 6(4): 289–300. doi: 10.1089/ham.2005.6.289
[13]  American Thoracic Society (1999) Recommendations for standardized procedures for the online and offline measurement of exhaled lower respiratory nitric oxide and nasal nitric oxide in adults and children. Am. J. Respir Crit Care Med 160: 2104–2117. doi: 10.1164/ajrccm.160.6.ats8-99
[14]  Molina M, Zhao W, Sankaran S, Schivo M, Kenyon NJ, et al. (2008) Design-of-experiment optimization of exhaled breath condensate analysis using a miniature differential mobility spectrometer (DMS). Analytica Chimica Acta 628: 155–161. doi: 10.1016/j.aca.2008.09.010
[15]  Andrade L, Manolakos ES (2003) Signal backgound estimatin and baseline correction algorithms for accurate DNA sequencing. J VLSI Signal Process 35: 229–243. doi: 10.1023/b:vlsi.0000003022.86639.1f
[16]  Zhao WX, Davis CE (2009) Autoregressive model based feature extraction method for time shifted chromatography data. Chemom Intell Lab Syst 96: 252–257. doi: 10.1016/j.chemolab.2009.02.010
[17]  Zhao W, Morgan JT, Davis CE (2008) Gas chromatography data classification based on complex coefficients of an autoregressive model. J Sensors [serial online]. Available at: http://www.hindawi.com/journals/js/2008/?262501/ via the Internet. Accessed 11 Feb 2011.
[18]  Hoeper MM, Bogaard HJ, Condliffe R, Frantz R, Khanna D, et al.. (2013) Definitions and diagnosis of pulmonary hypertension. JACC 62 :SupplD 42–50.
[19]  Windey K, De Preter V, Louat T, Schuit F, Herman J, et al.. (2012) Modulation of protein fermentation does not affect fecal water toxicity: a randomized cross-over study in healthy subjects. PLoS One [serial online]. Dec. 20.
[20]  Cikach F, Tonelli A, Barnes J, Paschke K, Newman J, et al.. (2013) Breath analysis in pulmonary arterial hypertension. Chest [Epub ahead of print]. Available: http://journal.publications.chestnet.org?/article.aspx?articleid=1745983 via the internet. Accessed 22 Nov 2013.
[21]  Smith D, Spaněl P (2011) Ambient analysis of trace compounds in gaseous media by SIFT-MS. Analyst 36: 2009–2032. doi: 10.1039/c1an15082k
[22]  Kwak J, Petri G (2011) Volatile disease biomarkers in breath: a critique. Curr Pharm Biotechnol 12: 1067–1074. doi: 10.2174/138920111795909050
[23]  Girgis RE, Champion HC, Diette GB, Johns RA, Permutt S, et al. (2005) Decreased exhaled nitric oxide in pulmonary arterial hypertension. Am J Respir Crit Care Med 172: 352–357. doi: 10.1164/rccm.200412-1684oc
[24]  Cremona G, Higenbottam T, Borland C, Mist B (1994) Mixed expired nitric oxide in primary pulmonary hypertension in relation to lung diffusion capacity. QJM 87: 547–551.
[25]  Kaneko FT, Arroliga AC, Dweik RA, Comhair SA, Laskowski D, et al. (1998) Biochemical reaction products of nitric oxide as quantitative markers of primary pulmonary hypertension. Am J Respir Crit Care Med 158: 917–923. doi: 10.1164/ajrccm.158.3.9802066
[26]  Riley MS, Pórszász J, Miranda J, Engelen MP, Brundage B, et al. (1997) Exhaled nitric oxide during exercise in primary pulmonary hypertension and pulmonary fibrosis. Chest 111: 44–50. doi: 10.1378/chest.111.1.44
[27]  Archer SL, Djaballah K, Humbert M, Weir KE, Fartoukh M, et al. (1998) Nitric oxide deficiency in fenfluramine- and dexfenfluramine-induced pulmonary hypertension. Am J Respir Crit Care Med 158: 1061–1067. doi: 10.1164/ajrccm.158.4.9802113
[28]  Nagaya N, Nishikimi T, Okano Y, Uematsu M, Satoh T, et al. (1998) Plasma brain natriuretic peptide levels increase in proportion to the extent of right ventricular dysfunction in pulmonary hypertension. J Am Coll Cardiol 31: 202–208. doi: 10.1016/s0735-1097(97)00452-x
[29]  Leuchte HH, Holzapfel M, Baumgartner RA, Ding I, Neurohr C, et al. (2004) Clinical significance of brain natriuretic peptide in primary pulmonary hypertension. J Am Coll Cardiol 43: 764–770. doi: 10.1016/j.jacc.2003.09.051
[30]  Fijalkowsha A, Kurzyna M, Torbicki A, Szewczyk G, Florczyk M, et al. (2006) Serum n-terminal brain natriuretic peptide as a prognostic parameter in patients with pulmonary hypertension. Chest 129: 1313–1321. doi: 10.1378/chest.129.5.1313
[31]  Nagaya N, Nishikimi T, Uematsu M, Satoh T, Kyotani S, et al. (2001) Plasma brain natriuretic peptide as a prognostic indicator in patients with primary pulmonary hypertension. Circulation 102: 865–870. doi: 10.1161/01.cir.102.8.865
[32]  Droste AS, Rohde D, Voelkers M, Filush A, Bruckner T, et al. (2009) Endothelin receptor antagonist and airway dysfunction in pulmonary arterial hypertension. Respir Res 10: 129–136. doi: 10.1186/1465-9921-10-129

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133