全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS ONE  2014 

Field Assessment of the Predation Risk - Food Availability Trade-Off in Crab Megalopae Settlement

DOI: 10.1371/journal.pone.0095335

Full-Text   Cite this paper   Add to My Lib

Abstract:

Settlement is a key process for meroplanktonic organisms as it determines distribution of adult populations. Starvation and predation are two of the main mortality causes during this period; therefore, settlement tends to be optimized in microhabitats with high food availability and low predator density. Furthermore, brachyuran megalopae actively select favorable habitats for settlement, via chemical, visual and/or tactile cues. The main objective in this study was to assess the settlement of Metacarcinus edwardsii and Cancer plebejus under different combinations of food availability levels and predator presence. We determined, in the field, which factor is of greater relative importance when choosing a suitable microhabitat for settling. Passive larval collectors were deployed, crossing different scenarios of food availability and predator presence. We also explore if megalopae actively choose predator-free substrates in response to visual and/or chemical cues. We tested the response to combined visual and chemical cues and to each individually. Data was tested using a two-way factorial design ANOVA. In both species, food did not cause significant effect on settlement success, but predator presence did, therefore there was not trade-off in this case and megalopae respond strongly to predation risk by active aversion. Larvae of M. edwardsii responded to chemical and visual cues simultaneously, but there was no response to either cue by itself. Statistically, C. plebejus did not exhibit a differential response to cues, but reacted with a strong similar tendency as M. edwardsii. We concluded that crab megalopae actively select predator-free microhabitat, independently of food availability, using chemical and visual cues combined. The findings in this study highlight the great relevance of predation on the settlement process and recruitment of marine invertebrates with complex life cycles.

References

[1]  Underwood A, Keough MJ (2001) Supply-side ecology the nature and consequences of variations in recruitment of intertidal organisms. In: Berteness M., Gaines S, & Hay M. (Eds.), Marine Community Ecology. Sinauer Associates Inc, Sunderland. 183–200.
[2]  Gaines S, Roughgarden J (1985) Larval settlement rate: A leading determinant of structure in an ecological community of the marine intertidal zone. Proc Natl Acad Sci USA 82(11): 3707–3711. doi: 10.1073/pnas.82.11.3707
[3]  Caley MJ, Carr MH, Hixon MA, Hughes TP, Jones GP, et al. (1996) Recruitment and the local dynamics of Open Marine Populations. Annu Rev Ecol Syst 26: 477–500. doi: 10.1146/annurev.ecolsys.27.1.477
[4]  Fernandez M, Iribarne O, Armstrong D (1993) Habitat selection by Young-of-the-year Dungeness crab Cancer magister and predation risk in intertidal habitats. Mar Ecol Prog Ser 92: 171–177. doi: 10.3354/meps092171
[5]  Moksnes P-O (2002) The relative importance of habitat-specific settlement, predation and juvenile dispersal for distribution and abundance of young juvenile shore crabs Carcinus maenas. J Exp Mar Biol Ecol 271: 41–73. doi: 10.1016/s0022-0981(02)00041-2
[6]  Keough MJ, Downes BJ (1982) Recruitment of marine invertebrates: the role of active larval choice and early mortality. Oecologia 54, 348–352.
[7]  Pirtle JL, Stoner AW (2010) Red king crab (Paralithodes camtschaticus) early post-settlement habitat choice: Structure, food, and ontogeny. J Exp Mar Biol Ecol 393: 130–137. doi: 10.1016/j.jembe.2010.07.012
[8]  Beck MW, Heck KL Jr, Able KW, Childers DL, Eggleston DB, et al. (2001) The Identification, Conservation, and Management of Estuarine and Marine Nurseries for Fish and Invertebrates. BioScience 51: 633–641. doi: 10.1641/0006-3568(2001)051[0633:ticamo]2.0.co;2
[9]  Rodriguez SR, Ojeda FP, Inestrosa NC (1993) Settlement of Benthic Marine Invertebrates. Mar Ecol Prog Ser 97: 193–207. doi: 10.3354/meps097193
[10]  Forward RB Jr, Tankersley RA, Rittschof D (2001) Cues for metamorphosis of brachyuran crabs: an overview. Am Zool 41: 1108–1122. doi: 10.1093/icb/41.5.1108
[11]  Gebauer P, Paschke K, Anger K (2003) Delayed metamorphosis in Decapod Crustaceans: evidence and consequences. Rev Chil Hist Nat 76: 169–175. doi: 10.4067/s0716-078x2003000200004
[12]  Paul VJ, Ritson-Williams R, Sharp K (2011) Marine chemical ecology in benthic environments. Nat Prod Rep 28: 345–387. doi: 10.1039/c0np00040j
[13]  Stoner DS (1990) Recruitment of a tropical colonial ascidian: relative importance of pre-settlement vs post-settlement processes. Ecology 71: 1682–1690. doi: 10.2307/1937577
[14]  Pechenik JA (1990) Delayed metamorphosis by larvae of benthic marine invertebrates: Does it occur? Is there a price to pay? Ophelia 32: 63–94. doi: 10.1080/00785236.1990.10422025
[15]  Thiel M, Zander A, Valdivia N, Baeza JA, Rueffler C (2003) Host fidelity of a symbiotic porcellanid crab: the importance of host characteristics. J Zool 261: 353–362. doi: 10.1017/s0952836903004333
[16]  Underwood A (2004) Landing on one’s foot: small-scale topographic features of habitat and the dispersion of juvenile intertidal gastropods. Mar Ecol Prog Ser 268: 173–182. doi: 10.3354/meps268173
[17]  Pardo LM, Palma AT, Prieto C, Sepulveda P, Valdivia I, et al. (2007) Processes regulating early post-settlement habitat use in a subtidal assemblage of brachyuran decapods. J Exp Mar Biol Ecol 344: 10–22. doi: 10.1016/j.jembe.2006.12.024
[18]  Wolcott DL, De Vries MC (1994) Offshore megalopae of Callinectes sapidus: depth of collection, molt stage and response to estuarine cues. Mar Ecol Prog Ser 109: 157–163. doi: 10.3354/meps109157
[19]  O’Connor NJ (2007) Stimulation of molting in megalopae of the Asian shore crab Hemigrapsus sanguineus: physical and chemical cues. Mar Ecol Prog Ser 352: 1–8. doi: 10.3354/meps07315
[20]  Steinberg MK, Krimsky LS, Epifanio CE (2008) Induction of metamorphosis in the Asian Shore Crab Hemigrapsus sanguineus: Effects of Biofilms and Substratum Texture. Estuaries Coast 31: 738–744. doi: 10.1007/s12237-008-9063-6
[21]  Welch JM, Rittschof D, Bullock TM, Forward RB Jr (1997) Effects of chemical cues on settlement behavior of blue crab Callinectes sapidus postlarvae. Mar Ecol Prog Ser 154: 143–153. doi: 10.3354/meps154143
[22]  Diaz H, Orihuela B, Forward RB Jr, Rittschof D (1999) Orientation of blue crab: Caliinectes sapidus (Rathbun), Megalopae: Responses to visual and chemical cues. J Exp Mar Biol Ecol 233: 25–40. doi: 10.1016/s0022-0981(98)00121-x
[23]  Diaz H, Orihuela B, Forward RB Jr, Rittschof D (2001) Effect of chemical cues on visual orientation of juvenile blue crabs, Callinectes sapidus (Rathbun). J Mar Biol Ecol 266: 1–15. doi: 10.1016/s0022-0981(01)00330-6
[24]  Forward RB Jr, Tankersley RA, Smith KA, Welch JM (2003) Effects of chemical cues on orientation of blue crab, Callinectes sapidus megalopae in flow: implications for location of nursery areas. Mar Bio. 142: 747–756.
[25]  Jensen GC (1989) Gregarious settlement by megalopae of the porcelain crabs Petrolisthes cinctipes (Randall) and P. eriomerus Stimpson. J Exp Mar Biol Ecol 131: 223–231. doi: 10.1016/0022-0981(89)90114-7
[26]  Gebauer P, Walter I, Anger K (1998) Effects of substratum and conspecific adults on the metamorphosis of Chasmagnathus granulata (Dana) (Decapoda: Grapsidae) megalopae. J Exp Mar Biol Ecol 223: 185–198. doi: 10.1016/s0022-0981(97)00159-7
[27]  Luppi TA, Spivak ED, Anger K (2001) Experimental studies on predation and cannibalism of the settlers of Chasmagnathus granulata and Cyrtograpsus angulatus (Brachyura: Grapsidae). J Exp Mar Biol Ecol 26: 29–48. doi: 10.1016/s0022-0981(01)00322-7
[28]  Moksnes P-O, Hedvall O, Reinwald T (2003) Settlement behavior in shore crabs Carcinus maenas: why do postlarvae emigrate from nursery habitats? Mar Ecol Prog Ser 250: 215–230. doi: 10.3354/meps250215
[29]  Almeida MJ, Gonzalez-Gordillo JI, Flores AAV, Queiroga H (2012) Cannibalism, post settlement growth rate and size refuge in a recruitment-limited population of the shore crab Carcinus maenas. J Exp Mar Biol Ecol 410: 72–79. doi: 10.1016/j.jembe.2011.10.011
[30]  Méndez-Casariego A, Alberti J, Luppi T, Iribarne O (2009) Stage-dependent interactions between intertidal crabs: from facilitation to predation. J Mar Biol Ass UK 89(4): 781–788. doi: 10.1017/s0025315408002324
[31]  Sotelano MP, Lovrich GA, Romero MC, Tapella F (2012) Cannibalism during intermolt period in early stages of the Southern King Crab Lithodes santolla (Molina 1872): effect of stage and predator-prey proportions. J Exp Mar Biol Ecol 411: 52–58. doi: 10.1016/j.jembe.2011.10.029
[32]  Januario SB, Navarrete SA (2013) Cannibalism and inter-specific predation in early stages of intertidal crab species that compete for refuges. J Exp Mar Biol Ecol 446: 36–44. doi: 10.1016/j.jembe.2013.04.017
[33]  Lindsey EL, Altieri AH, Witman JD (2006) Influence of biogenic habitat on the recruitment and distribution of a subtidal xanthid crab. Mar Ecol Prog Ser 306: 223–231. doi: 10.3354/meps306223
[34]  Krediet CJ, Donahue MJ (2009) Growth-mortality trade-offs along a depth gradient in Cancer borealis. J Exp Mar Biol Ecol 373(2): 133–139. doi: 10.1016/j.jembe.2009.04.001
[35]  SERNAPESCA (2011) Anuario de estadísticas pesqueras. Ministerio de Economía, Servicio Nacional de Pesca, Gobierno de Chile, 186.
[36]  Pardo LM, Cardyn CS, Garcés-Vargas J (2012) Spatial variation in the environmental control of crab larval settlement in a micro-tidal austral estuary. Helgol Mar Res 66(3): 253–263. doi: 10.1007/s10152-011-0267-y
[37]  Pardo LM, Mora-Vasquéz P, Garcés-Vargas J (2012) Asentamiento diario de megalopas de jaibas del género Cancer en un estuario micromareal. Lat Am J Aquat Res 40(1): 142–152. doi: 10.3856/vol40-issue1-fulltext-14
[38]  Pardo LM, Cardyn CS, Mora-Vasquéz P, Wahle RA (2010) A new passive collector to assess settlement rates, substrate selection and predation pressure in decapod crustacean larvae. J Exp Mar Biol Ecol 393: 100–105. doi: 10.1016/j.jembe.2010.07.008
[39]  Pino M, Perillo GME, Santamarina P (1994) Residual fluxes in a cross section in the Valdivia River estuary, Chile. Est Coast Shelf Sci 38: 491–505. doi: 10.1006/ecss.1994.1034
[40]  Garces-Vargas J, Ruiz M, Pardo LM, Nu?ez S, Pérez-Santos I (2013) Caracterización hidrográfica del estuario del río Valdivia, centro-sur de Chile. Lat Am J Aquat Res 41(1): 113–125. doi: 10.3856/vol41-issue1-fulltext-9
[41]  Pardo LM, Ampuero D, Véliz D (2009) Using morphological and molecular tools to identify megalopae larvae collected in the field: the case of sympatric Cancer crabs. J Mar Biol Assoc UK 89(3): 481–490. doi: 10.1017/s0025315409003233
[42]  Zar JH (1999) Biostatistical Analysis. New Jersey: Prentice Hall. 662p.
[43]  Allen JD, McAlister JS (2007) Testing rates of planktonic versus benthic predation in the field. J Exp Mar Biol Ecol 347: 77–87. doi: 10.1016/j.jembe.2007.03.010
[44]  Moksnes P-O, Heck KL Jr (2006) Relative importance of habitat selection and predation for the distribution of blue crab megalopae and young juveniles. Mar Ecol Prog Ser 308: 165–181. doi: 10.3354/meps308165
[45]  Dittel A, Epifanio CE, Natunewicz C (1996) Predation on mud crab megalopae, Panopeus herbstii (H. Milne Edwards): Effect of habitat complexity, predator species and post-larval densities. J Exp Mar Biol Ecol 198(2): 191–202. doi: 10.1016/0022-0981(96)00003-2
[46]  Rodriguez RA, Epifanio CE (2000) Multiple cues for induction of metamorphosis in larvae of the common mud crab Panopeus herbstii. Mar Ecol Prog Ser 195: 221–229. doi: 10.3354/meps195221
[47]  Matamala TB (2011) Poliquetos asociados a los grampones de Macrocystis pyrifera dentro del estuario del Rio Valdivia: Variaciones en un gradiente estuarino. Thesis in Marine Biology, Escuela de Biología Marina, Facultad de Ciencias, Universidad Austral de Chile, 71.
[48]  Stevens BG (2003) Settlement, substratum preference, and survival of red king crab Paralithodes camtschaticus (Tilesius, 1815) glaucothoe on natural substrata in the laboratory. J Exp Mar Biol Ecol 283, 63–78.
[49]  Lecchini D (2011) Visual and chemical cues in habitat selection of sepioid larvae. Cr Soc Biol 334(12): 911–915. doi: 10.1016/j.crvi.2011.08.003
[50]  Krimsky LS, Epifanio CE (2008) Multiple cues from multiple habitats: Effect on metamorphosis of the Florida stone crab, Menippe mercenaria. J Exp Mar Biol Ecol 358: 178–184. doi: 10.1016/j.jembe.2008.02.010
[51]  Rittschof D, Tsai DW, Massey PG, Blanco L, Kueber GL Jr, et al. (1992) Chemical mediation of behavior in hermit crabs: Alarm and aggregation cues. J Chem Ecol 18(7): 959–984. doi: 10.1007/bf00980056
[52]  El-Kareem TG (2012) Effects of visual and chemical cues on orientation behavior of the Red Sea hermit crab Clibanarius signatus. J Bas App Zool 65(2): 95–105. doi: 10.1016/j.jobaz.2012.02.004
[53]  Hazlett BA, Mclay C (2005) Responses to predation risk: alternative strategies in the crab Heterozius rotundifrons. Anim Behav 69(4): 967–972. doi: 10.1016/j.anbehav.2004.06.028
[54]  Chiussi R, Diaz H, Rittschof D, Forward R (2001) Orientation of the hermit crab Clibanarius antillensis: effects of chemical and visual cues. J Crust Biol 21(3): 593–605. doi: 10.1163/20021975-99990161
[55]  Wiseden BD (2000) Olfactory assessment of predation in the aquatic environment. Philos Trans R Soc Lond 355: 1205–1208.
[56]  Williamson JE, Gleeson C, Bell JE, Va?tilingon D (2012) The role of visual and chemical cues in host detection by the symbiotic shrim Gnathophylloides mineri.. J Exp Mar Biol Ecol 414: 38–43. doi: 10.1016/j.jembe.2012.01.009
[57]  Anger K (2006) Contributions of larval biology to crustacean research: a review. Invertebr Reprod Dev 49(3): 175–205. doi: 10.1080/07924259.2006.9652207
[58]  Jensen GC (1991) Competency, settling behavior, and postsettlement aggregation by porcelain crab megalopae (Anomura: Porcellanidae). J Exp Mar Biol Ecol 153: 49–61. doi: 10.1016/s0022-0981(05)80005-x
[59]  Schram FR, Ng PKL (2012) What is Cancer?. J Crust Biol 32(4): 665–672. doi: 10.1163/193724012x640650
[60]  Méndez-Casariego A, Alberti J, Luppi T, Daleo P, Iribarne O (2011) Habitat shifts and spatial distribution of the intertidal crab Neohelice (Chasmagnathus) granulata Dana. J Sea Res 66: 87–94. doi: 10.1016/j.seares.2011.05.001
[61]  Diele K, Simith DJB (2007) Effects of substrata and conspecific odour on the metamorphosis of mangrove crab megalopae, Ucides cordatus (Ocypodidae). J Exp Mar Biol Ecol 348: 174–182. doi: 10.1016/j.jembe.2007.04.008

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133