全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS ONE  2014 

Direct Evidence on the Contribution of a Missense Mutation in GDF9 to Variation in Ovulation Rate of Finnsheep

DOI: 10.1371/journal.pone.0095251

Full-Text   Cite this paper   Add to My Lib

Abstract:

The Finnish Landrace (Finnsheep) is a well known high-prolificacy sheep breed and has been used in many countries as a source of genetic material to increase fecundity of local breeds. Analyses to date have indicated that mutations with a large effect on ovulation rate are not responsible for the exceptional prolificacy of Finnsheep. The objectives of this study were to ascertain if: 1) any of 12 known mutations with large effects on ovulation rate in sheep, or 2) any other DNA sequence variants within the candidate genes GDF9 and BMP15 are implicated in the high prolificacy of the Finnish Landrace breed; using material from lines developed by divergent selection on ovulation rate. Genotyping results showed that none of 12 known mutations (FecBB, FecXB, FecXG, FecXGR, FecXH, FecXI, FecXL, FecXO, FecXR, FecGE, FecGH, or FecGT) were present in a sample of 108 Finnsheep and, thus, do not contribute to the exceptional prolificacy of the breed. However, DNA sequence analysis of GDF9 identified a previously known mutation, V371M, whose frequency differed significantly (P<0.001) between High and Low ovulation rate lines. While analysis of ovulation rate data for Finnsheep failed to establish a significant association between this trait and V371M, analysis of data on Belclare sheep revealed a significant association between V371M and ovulation rate (P<0.01). Ewes that were heterozygous for V371M exhibited increased ovulation rate (+0.17, s.e. 0.080; P<0.05) compared to wild type and the effect was non-additive (ovulation rate of heterozygotes was significantly lower (P<0.01) than the mean of the homozygotes). This finding brings to 13 the number of mutations that have large effects on ovulation rate in sheep and to 5, including FecBB, FecGE, FecXO and FecXGR, the number of mutations within the TGFβ superfamily with a positive effect on prolificacy in the homozygous state.

References

[1]  Shimasaki S, Moore RK, Otsuka F, Erickson GF (2004) The bone morphogenetic protein system in mammalian reproduction. Endocr Rev 25: 72–101. doi: 10.1210/er.2003-0007
[2]  McNatty KP, Moore LG, Hudson NL, Quirke LD, Lawrence SB, et al. (2004) The oocyte and its role in regulating ovulation rate: a new paradigm in reproductive biology. Reproduction 128: 379–386. doi: 10.1530/rep.1.00280
[3]  McNatty KP, Galloway SM, Wilson T, Smith P, Hudson NL, et al. (2005) Physiological effects of major genes affecting ovulation rate in sheep. Genet Sel Evol 37: S25–S38. doi: 10.1186/1297-9686-37-s1-s25
[4]  Piper LR, Bindon BM (1982) The Booroola Merino and the performance of medium non-peppin crosses at Armidale. In: Piper LR, Bindon BM, Nethery RD, editors. The Booroola Merino. Melbourne: CSIRO. 9–19.
[5]  Wilson T, Wu XY, Juengel JL, Ross IK, Lumsden JM, et al. (2001) Highly prolific Booroola sheep have a mutation in the intracellular kinase domain of bone morphogenetic protein IB receptor (ALK-6) that is expressed in both oocytes and granulosa cells. Biol Reprod 64: 1225–1235. doi: 10.1095/biolreprod64.4.1225
[6]  Galloway SM, McNatty KP, Cambridge LM, Laitinen MP, Juengel JL, et al. (2000) Mutations in an oocyte-derived growth factor gene (BMP15) cause increased ovulation rate and infertility in a dosage-sensitive manner. Nat Genet 25: 279–283.
[7]  Hanrahan JP, Gregan SM, Mulsant P, Mullen M, Davis GH, et al. (2004) Mutations in the genes for oocyte-derived growth factors GDF9 and BMP15 are associated with both increased ovulation rate and sterility in Cambridge and Belclare sheep (Ovis aries). Biol Reprod 70: 900–909. doi: 10.1095/biolreprod.103.023093
[8]  Bodin L, Di Pasquale E, Fabre S, Bontoux M, Monget P, et al. (2007) A novel mutation in the bone morphogenetic protein 15 gene causing defective protein secretion is associated with both increased ovulation rate and sterility in Lacaune sheep. Endocrinology 148: 393–400. doi: 10.1210/en.2006-0764
[9]  Nicol L, Bishop SC, Pong-Wong R, Bendixen C, Holm L-E, et al. (2009) Homozygosity for a single base-pair mutation in the oocyte-specific GDF9 gene results in sterility in Thoka sheep. Reproduction 138: 921–933. doi: 10.1530/rep-09-0193
[10]  Silva BDM, Castro EA, Souza CJH, Paiva SR, Sartori R, et al. (2011) A new polymorphism in the Growth and Differentiation Factor 9 (GDF9) gene is associated with increased ovulation rate and prolificacy in homozygous sheep. Anim Genet 42: 89–92. doi: 10.1111/j.1365-2052.2010.02078.x
[11]  Martinez-Royo A, Jurado JJ, Smulders JP, Marti JI, Alabart JL, et al. (2008) A deletion in the bone morphogenetic protein 15 gene causes sterility and increased prolificacy in Rasa Aragonesa sheep. Anim Genet 39: 294–297. doi: 10.1111/j.1365-2052.2008.01707.x
[12]  Demars J, Fabre S, Sarry J, Rossetti R, Gilbert H, et al. (2013) Genome-wide association studies identify two novel BMP15 mutations responsible for an atypical hyperprolificacy phenotype in sheep. PLoS Genet 9: e1003482. doi: 10.1371/journal.pgen.1003482
[13]  Hanrahan JP, Quirke JF (1985) Conribution of variation in ovulation rate and embryo survival to within breed variation in litter size. In: Land R, Robinson D, editors. Genetics of Reproduction in Sheep. London: Butterworths. 193–201.
[14]  Land R (1978) Genetic improvement of mammalian fertility: A review of opportunities. Anim Reprod Sci 1: 109–135. doi: 10.1016/0378-4320(78)90020-9
[15]  Hanrahan JP (2002) Response to divergent selection for ovulation rate in Finn sheep. Proceedings of the 7th World Con Gen App Livest Prod. 30: 673–676.
[16]  Hanrahan JP (1982) Selection for increased ovulation rate, litter size and embryo survival. Proceedings of the 2nd World Con Gen App Livest Prod. 5: 294–309.
[17]  Maijala K (1996) The Finnsheep. In: Fahmy MH, editor. Prolific Sheep. Oxon, UK.: CAB International. 10–46.
[18]  Davis GH, Balakrishnan L, Ross IK, Wilson T, Galloway SM, et al. (2006) Investigation of the Booroola (FecBB) and Inverdale (FecXI) mutations in 21 prolific breeds and strains of sheep sampled in 13 countries. Anim Reprod Sci 92: 87–96. doi: 10.1016/j.anireprosci.2005.06.001
[19]  Hanrahan JP (1990) Belclare breed development. Research Report. Dublin, Ireland: Teagasc. p 139.
[20]  Fabre S, Pierre A, Mulsant P, Bodin L, Di Pasquale E, et al. (2006) Regulation of ovulation rate in mammals: contribution of sheep genetic models. Reprod Biol Endocrinol 4: e20.
[21]  Dong J, Albertini DF, Nishimori K, Kumar TR, Lu N, et al. (1996) Growth differentiation factor-9 is required during early ovarian folliculogenesis. Nature 383: 531–535. doi: 10.1038/383531a0
[22]  Lecerf F, Mulsant P, Elsen JM, Bodin L (2002) Localisation and mapping of a major gene controlling ovulation rate in Lacaune sheep. Proceedings of the 7th World Con Gen App Livest Prod. 30: 753–756.
[23]  Drouilhet L, Taragnat C, Fontaine Jl, Duittoz A, Mulsant P, et al. (2010) Endocrine characterization of the reproductive axis in highly prolific lacaune sheep homozygous for the FecLL mutation. Biol Reprod 82: 815–824. doi: 10.1095/biolreprod.109.082065
[24]  Yan C, Wang P, DeMayo J, DeMayo FJ, Elvin JA, et al. (2001) Synergistic roles of bone morphogenetic protein 15 and growth differentiation factor 9 in ovarian function. Mol Endocrinol 15: 854–866. doi: 10.1210/mend.15.6.0662
[25]  Liao WX, Moore RK, Otsuka F, Shimasaki S (2003) Effect of intracellular interactions on the processing and secretion of bone morphogenetic protein-15 (BMP-15) and growth and differentiation factor-9. J Biol Chem 278: 3713–3719. doi: 10.1074/jbc.m210598200
[26]  Vitt UA, Hayashi M, Klein C, Hsueh AJ (2000) Growth differentiation factor-9 stimulates proliferation but suppresses the follicle-stimulating hormone-induced differentiation of cultured granulosa cells from small antral and preovulatory rat follicles. Biol Reprod 62: 370–377. doi: 10.1095/biolreprod62.2.370
[27]  V?ge DI, Husdal M, Kent MP, Klemetsdal G, Boman IA (2013) A missense mutation in growth differentiation factor 9 (GDF9) is strongly associated with litter size in sheep. BMC genetics 14: 1. doi: 10.1186/1471-2156-14-1
[28]  Eikje LS, ?dn?y T, Klemetsdal G (2008) The Norwegian sheep breeding scheme: description, genetic and phenotypic change. Animal 2: 167–176. doi: 10.1017/s1751731107001176
[29]  Steine T (1985) Genetic studies of reproduction in Norwegian sheep. In: Land R, Robinson D, editors. Genetics of Reproduction in Sheep. London: Butterworths. 47–54.
[30]  Mullen MP, Hanrahan JP, Howard DJ, Powell R (2013) Investigation of Prolific Sheep from UK and Ireland for Evidence on Origin of the Mutations in BMP15 (FecXG, FecXB) and GDF9 (FecGH) in Belclare and Cambridge Sheep. PLoS ONE 8: e53172. doi: 10.1117/1.601118
[31]  Di Pasquale E, Beck-Peccoz P, Persani L (2004) Hypergonadotropic ovarian failure associated with an inherited mutation of human bone morphogenetic protein-15 (BMP15) gene. Am J Hum Genet 75: 106–111. doi: 10.1086/422103
[32]  Di Pasquale E, Rossetti R, Marozzi A, Bodega B, Borgato S, et al. (2006) Identification of new variants of human BMP15 gene in a large cohort of women with premature ovarian failure. J Clin Endocrinol Metab 91: 1976–1979. doi: 10.1210/jc.2005-2650
[33]  Teixeira Filho FL, Baracat EC, Lee TH, Suh CS, Matsui M, et al. (2002) Aberrant expression of growth differentiation factor-9 in oocytes of women with polycystic ovary syndrome. J Clin Endocrinol Metab 87: 1337–1344. doi: 10.1210/jcem.87.3.8316
[34]  Dixit H, Rao LK, Padmalatha VV, Kanakavalli M, Deenadayal M, et al. (2006) Missense mutations in the BMP15 gene are associated with ovarian failure. Hum Genet 119: 408–415. doi: 10.1007/s00439-006-0150-0
[35]  Mullen MP, Howard DJ, Powell R, Hanrahan JP (2009) A note on the use of FTA technology for storage of blood samples for DNA analysis and removal of PCR inhibitors. Ir J Agr Food Res 48: 109–113.
[36]  Adzhubei IA, Schmidt S, Peshkin L, Ramensky VE, Gerasimova A, et al. (2010) A method and server for predicting damaging missense mutations. Nat Methods 7: 248–249. doi: 10.1038/nmeth0410-248
[37]  Kumar P, Henikoff S, Ng PC (2009) Predicting the effects of coding non-synonymous variants on protein function using the SIFT algorithm. Nat Protoc 4: 1073–1081. doi: 10.1038/nprot.2009.86
[38]  Zhang Z, Miteva MA, Wang L, Alexov E (2012) Analyzing Effects of Naturally Occurring Missense Mutations. Comput Math Methods Med 2012: 15. doi: 10.1155/2012/805827
[39]  Cheng J, Randall A, Baldi P (2006) Prediction of protein stability changes for single-site mutations using support vector machines. Proteins 62: 1125–1132. doi: 10.1002/prot.20810
[40]  Dosztanyi Z, Fiser A, Simon I (1997) Stabilization centers in proteins: identification, characterization and predictions. J Mol Biol 272: 597–612. doi: 10.1006/jmbi.1997.1242

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133