全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS ONE  2014 

Sub-Inhibitory Fosmidomycin Exposures Elicits Oxidative Stress in Salmonella enterica Serovar typhimurium LT2

DOI: 10.1371/journal.pone.0095271

Full-Text   Cite this paper   Add to My Lib

Abstract:

Fosmidomycin is a time-dependent nanomolar inhibitor of methylerythritol phosphate (MEP) synthase, which is the enzyme that catalyzes the first committed step in the MEP pathway to isoprenoids. Importantly, fosmidomycin is one of only a few MEP pathway-specific inhibitors that exhibits antimicrobial activity. Most inhibitors identified to date only exhibit activity against isolated pathway enzymes. The MEP pathway is the sole route to isoprenoids in many bacteria, yet has no human homologs. The development of inhibitors of this pathway holds promise as novel antimicrobial agents. Similarly, analyses of the bacterial response toward MEP pathway inhibitors provides valuable information toward the understanding of how emergent resistance may ultimately develop to this class of antibiotics. We have examined the transcriptional response of Salmonella enterica serovar typhimurium LT2 to sub-inhibitory concentrations of fosmidomycin via cDNA microarray and RT-PCR. Within the regulated genes identified by microarray were a number of genes encoding enzymes associated with the mediation of reactive oxygen species (ROS). Regulation of a panel of genes implicated in the response of cells to oxidative stress (including genes for catalases, superoxide dismutases, and alkylhydrogen peroxide reductases) was investigated and mild upregulation in some members was observed as a function of fosmidomycin exposure over time. The extent of regulation of these genes was similar to that observed for comparable exposures to kanamycin, but differed significantly from tetracycline. Furthermore, S. typhimurium exposed to sub-inhibitory concentrations of fosmidomycin displayed an increased sensitivity to exogenous H2O2 relative to either untreated controls or kanamycin-treated cells. Our results suggest that endogenous oxidative stress is one consequence of exposures to fosmidomycin, likely through the temporal depletion of intracellular isoprenoids themselves, rather than other mechanisms that have been proposed to facilitate ROS accumulation in bacteria (e.g. cell death processes or the ability of the antibiotic to redox cycle).

References

[1]  Fox DT, Poulter CD (2005) Mechanistic studies with 2-C-methyl-D-erythritol 4-phosphate synthase from Escherichia coli. Biochemistry 44: 8360–8368. doi: 10.1021/bi047312p
[2]  Koppisch AT, Fox DT, Blagg BS, Poulter CD (2002) E. coli MEP synthase: steady-state kinetic analysis and substrate binding. Biochemistry 41: 236–243. doi: 10.1021/bi0118207
[3]  Proteau PJ (2004) 1-Deoxy-D-xylulose 5-phosphate reductoisomerase: an overview. Bioorg Chem 32: 483–493. doi: 10.1016/j.bioorg.2004.08.004
[4]  Takahashi S, Kuzuyama T, Watanabe H, Seto H (1998) A 1-deoxy-D-xylulose 5-phosphate reductoisomerase catalyzing the formation of 2-C-methyl-D-erythritol 4-phosphate in an alternative nonmevalonate pathway for terpenoid biosynthesis. Proc Natl Acad Sci U S A 95: 9879–9884. doi: 10.1073/pnas.95.17.9879
[5]  Jomaa H, Wiesner J, Sanderbrand S, Altincicek B, Weidemeyer C, et al. (1999) Inhibitors of the nonmevalonate pathway of isoprenoid biosynthesis as antimalarial drugs. Science 285: 1573–1576. doi: 10.1126/science.285.5433.1573
[6]  Odom AR (2011) Five questions about non-mevalonate isoprenoid biosynthesis. PLoS Pathog 7: e1002323. doi: 10.1371/journal.ppat.1002323
[7]  Testa CA, Brown MJ (2003) The methylerythritol phosphate pathway and its significance as a novel drug target. Curr Pharm Biotechnol 4: 248–259. doi: 10.2174/1389201033489784
[8]  Zhang B, Watts KM, Hodge D, Kemp LM, Hunstad DA, et al. (2011) A second target of the antimalarial and antibacterial agent fosmidomycin revealed by cellular metabolic profiling. Biochemistry 50: 3570–3577. doi: 10.1021/bi200113y
[9]  Betts JC, McLaren A, Lennon MG, Kelly FM, Lukey PT, et al. (2003) Signature gene expression profiles discriminate between isoniazid-, thiolactomycin-, and triclosan-treated Mycobacterium tuberculosis. Antimicrob Agents Chemother 47: 2903–2913. doi: 10.1128/aac.47.9.2903-2913.2003
[10]  Hutter B, Schaab C, Albrecht S, Borgmann M, Brunner NA, et al. (2004) Prediction of mechanisms of action of antibacterial compounds by gene expression profiling. Antimicrob Agents Chemother 48: 2838–2844. doi: 10.1128/aac.48.8.2838-2844.2004
[11]  Goh EB, Yim G, Tsui W, McClure J, Surette MG, et al. (2002) Transcriptional modulation of bacterial gene expression by subinhibitory concentrations of antibiotics. Proc Natl Acad Sci U S A 99: 17025–17030. doi: 10.1073/pnas.252607699
[12]  Yim G, de la Cruz F, Spiegelman GB, Davies J (2006) Transcription modulation of Salmonella enterica serovar typhimurium promoters by sub-MIC levels of rifampin. J Bacteriol 188: 7988–7991. doi: 10.1128/jb.00791-06
[13]  Yim G, McClure J, Surette MG, Davies JE (2011) Modulation of Salmonella gene expression by subinhibitory concentrations of quinolones. J Antibiot (Tokyo) 64: 73–78. doi: 10.1038/ja.2010.137
[14]  Bader MW, Navarre WW, Shiau W, Nikaido H, Frye JG, et al. (2003) Regulation of Salmonella typhimurium virulence gene expression by cationic antimicrobial peptides. Mol Microbiol 50: 219–230. doi: 10.1046/j.1365-2958.2003.03675.x
[15]  Fox DT, Poulter CD (2005) Synthesis and evaluation of 1-deoxy-D-xylulose 5-phosphoric acid analogues as alternate substrates for methylerythritol phosphate synthase. J Org Chem 70: 1978–1985. doi: 10.1021/jo048022h
[16]  Dwyer DJ, Kohanski MA, Collins JJ (2009) Role of reactive oxygen species in antibiotic action and resistance. Curr Opin Microbiol 12: 482–489. doi: 10.1016/j.mib.2009.06.018
[17]  Dwyer DJ, Kohanski MA, Hayete B, Collins JJ (2007) Gyrase inhibitors induce an oxidative damage cellular death pathway in Escherichia coli. Mol Syst Biol 3: 91. doi: 10.1038/msb4100135
[18]  Hassett DJ, Imlay JA (2007) Bactericidal antibiotics and oxidative stress: a radical proposal. ACS Chem Biol 2: 708–710. doi: 10.1021/cb700232k
[19]  Kohanski MA, Dwyer DJ, Hayete B, Lawrence CA, Collins JJ (2007) A common mechanism of cellular death induced by bactericidal antibiotics. Cell 130: 797–810. doi: 10.1016/j.cell.2007.06.049
[20]  Wang X, Zhao X (2009) Contribution of oxidative damage to antimicrobial lethality. Antimicrob Agents Chemother 53: 1395–1402. doi: 10.1128/aac.01087-08
[21]  Barnes AI, Herrero IL, Albesa I (2005) New aspect of the synergistic antibacterial action of ampicillin and gentamicin. Int J Antimicrob Agents 26: 146–151. doi: 10.1016/j.ijantimicag.2005.04.014
[22]  Becerra MC, Albesa I (2002) Oxidative stress induced by ciprofloxacin in Staphylococcus aureus. Biochem Biophys Res Commun 297: 1003–1007. doi: 10.1016/s0006-291x(02)02331-8
[23]  Becerra MC, Eraso AJ, Albesa I (2003) Comparison of oxidative stress induced by ciprofloxacin and pyoverdin in bacteria and in leukocytes to evaluate toxicity. Luminescence 18: 334–340. doi: 10.1002/bio.742
[24]  Radhi IJ, Wright G.D. (2011) Redox Mechanisms and Reactive Oxygen Species in Antibiotic Action and Resistance. In: Storz GaH, R., editor. Bacterial Stress Responses. Washington, D.C.: ASM Press. 461–471.
[25]  Kohanski MA, DePristo MA, Collins JJ (2010) Sublethal antibiotic treatment leads to multidrug resistance via radical-induced mutagenesis. Mol Cell 37: 311–320. doi: 10.1016/j.molcel.2010.01.003
[26]  Keren I, Wu Y, Inocencio J, Mulcahy LR, Lewis K (2013) Killing by bactericidal antibiotics does not depend on reactive oxygen species. Science 339: 1213–1216. doi: 10.1126/science.1232688
[27]  Liu Y, Imlay JA (2013) Cell death from antibiotics without the involvement of reactive oxygen species. Science 339: 1210–1213. doi: 10.1126/science.1232751
[28]  Brynildsen MP, Winkler JA, Spina CS, MacDonald IC, Collins JJ (2013) Potentiating antibacterial activity by predictably enhancing endogenous microbial ROS production. Nat Biotechnol 31: 160–165. doi: 10.1038/nbt.2458
[29]  Morones-Ramirez JR, Winkler JA, Spina CS, Collins JJ (2013) Silver enhances antibiotic activity against gram-negative bacteria. Sci Transl Med 5: 190ra181. doi: 10.1126/scitranslmed.3006276
[30]  Testa CA, Cornish RM, Poulter CD (2004) The sorbitol phosphotransferase system is responsible for transport of 2-C-methyl-D-erythritol into Salmonella enterica serovar typhimurium. J Bacteriol 186: 473–480. doi: 10.1128/jb.186.2.473-480.2004
[31]  Davies J, Spiegelman GB, Yim G (2006) The world of subinhibitory antibiotic concentrations. Curr Opin Microbiol 9: 445–453. doi: 10.1016/j.mib.2006.08.006
[32]  Leon A, Liu L, Yang Y, Hudock MP, Hall P, et al. (2006) Isoprenoid biosynthesis as a drug target: bisphosphonate inhibition of Escherichia coli K12 growth and synergistic effects of fosmidomycin. J Med Chem 49: 7331–7341. doi: 10.1021/jm060492b
[33]  Linares JF, Gustafsson I, Baquero F, Martinez JL (2006) Antibiotics as intermicrobial signaling agents instead of weapons. Proc Natl Acad Sci U S A 103: 19484–19489. doi: 10.1073/pnas.0608949103
[34]  Shaw KJ, Miller N, Liu X, Lerner D, Wan J, et al. (2003) Comparison of the changes in global gene expression of Escherichia coli induced by four bactericidal agents. J Mol Microbiol Biotechnol 5: 105–122. doi: 10.1159/000069981
[35]  Messiaen AS, Verbrugghen T, Declerck C, Ortmann R, Schlitzer M, et al. (2011) Resistance of the Burkholderia cepacia complex to fosmidomycin and fosmidomycin derivatives. Int J Antimicrob Agents 38: 261–264. doi: 10.1016/j.ijantimicag.2011.04.020
[36]  Fujisaki S, Ohnuma S, Horiuchi T, Takahashi I, Tsukui S, et al. (1996) Cloning of a gene from Escherichia coli that confers resistance to fosmidomycin as a consequence of amplification. Gene 175: 83–87. doi: 10.1016/0378-1119(96)00128-x
[37]  Sakamoto Y, Furukawa S, Ogihara H, Yamasaki M (2003) Fosmidomycin resistance in adenylate cyclase deficient (cya) mutants of Escherichia coli. Biosci Biotechnol Biochem 67: 2030–2033. doi: 10.1271/bbb.67.2030
[38]  Mackie RS, McKenney ES, van Hoek ML (2012) Resistance of Francisella novicida to fosmidomycin associated with mutations in the glycerol-3-phosphate transporter. Front Microbiol 3: 226. doi: 10.3389/fmicb.2012.00226
[39]  Ajikumar PK, Xiao WH, Tyo KE, Wang Y, Simeon F, et al. (2010) Isoprenoid pathway optimization for Taxol precursor overproduction in Escherichia coli.. Science 330: 70–74. doi: 10.1126/science.1191652
[40]  Overhage J, Bains M, Brazas MD, Hancock RE (2008) Swarming of Pseudomonas aeruginosa is a complex adaptation leading to increased production of virulence factors and antibiotic resistance. J Bacteriol 190: 2671–2679. doi: 10.1128/jb.01659-07
[41]  Salvetti S, Faegri K, Ghelardi E, Kolsto AB, Senesi S (2011) Global gene expression profile for swarming Bacillus cereus bacteria. Appl Environ Microbiol 77: 5149–5156. doi: 10.1128/aem.00245-11
[42]  Lai S, Tremblay J, Deziel E (2009) Swarming motility: a multicellular behaviour conferring antimicrobial resistance. Environ Microbiol 11: 126–136. doi: 10.1111/j.1462-2920.2008.01747.x
[43]  Kim W, Surette MG (2003) Swarming populations of Salmonella represent a unique physiological state coupled to multiple mechanisms of antibiotic resistance. Biol Proced Online 5: 189–196. doi: 10.1251/bpo61
[44]  Allison C, Lai HC, Hughes C (1992) Co-ordinate expression of virulence genes during swarm-cell differentiation and population migration of Proteus mirabilis. Mol Microbiol 6: 1583–1591. doi: 10.1111/j.1365-2958.1992.tb00883.x
[45]  Turnbull AL, Surette MG (2010) Cysteine biosynthesis, oxidative stress and antibiotic resistance in Salmonella typhimurium. Res Microbiol 161: 643–650. doi: 10.1016/j.resmic.2010.06.004
[46]  Turnbull AL, Surette MG (2008) L-Cysteine is required for induced antibiotic resistance in actively swarming Salmonella enterica serovar typhimurium. Microbiology 154: 3410–3419. doi: 10.1099/mic.0.2008/020347-0
[47]  Seaver LC, Imlay JA (2001) Alkyl hydroperoxide reductase is the primary scavenger of endogenous hydrogen peroxide in Escherichia coli. J Bacteriol 183: 7173–7181. doi: 10.1128/jb.183.24.7173-7181.2001
[48]  Vandecasteele SJ, Peetermans WE, Merckx R, Van Eldere J (2001) Quantification of expression of Staphylococcus epidermidis housekeeping genes with Taqman quantitative PCR during in vitro growth and under different conditions. J Bacteriol 183: 7094–7101. doi: 10.1128/jb.183.24.7094-7101.2001
[49]  Botteldoorn N, Van Coillie E, Grijspeerdt K, Werbrouck H, Haesebrouck F, et al. (2006) Real-time reverse transcription PCR for the quantification of the mntH expression of Salmonella enterica as a function of growth phase and phagosome-like conditions. J Microbiol Methods 66: 125–135. doi: 10.1016/j.mimet.2005.11.003
[50]  Morgan RW, Christman MF, Jacobson FS, Storz G, Ames BN (1986) Hydrogen peroxide-inducible proteins in Salmonella typhimurium overlap with heat shock and other stress proteins. Proc Natl Acad Sci U S A 83: 8059–8063. doi: 10.1073/pnas.83.21.8059
[51]  Leid JG, Ditto AJ, Knapp A, Shah PN, Wright BD, et al. (2012) In vitro antimicrobial studies of silver carbene complexes: activity of free and nanoparticle carbene formulations against clinical isolates of pathogenic bacteria. J Antimicrob Chemother 67: 138–148. doi: 10.1093/jac/dkr408
[52]  Wu Y, Vulic M, Keren I, Lewis K (2012) Role of oxidative stress in persister tolerance. Antimicrob Agents Chemother 56: 4922–4926. doi: 10.1128/aac.00921-12
[53]  Gu M, Imlay JA (2011) The SoxRS response of Escherichia coli is directly activated by redox-cycling drugs rather than by superoxide. Mol Microbiol 79: 1136–1150. doi: 10.1111/j.1365-2958.2010.07520.x
[54]  Imlay JA (2008) Cellular defenses against superoxide and hydrogen peroxide. Annu Rev Biochem 77: 755–776. doi: 10.1146/annurev.biochem.77.061606.161055
[55]  Pomposiello PJ, Demple B (2000) Identification of SoxS-regulated genes in Salmonella enterica serovar typhimurium. J Bacteriol 182: 23–29. doi: 10.1128/jb.182.1.23-29.2000
[56]  Pomposiello PJ, Demple B (2001) Redox-operated genetic switches: the SoxR and OxyR transcription factors. Trends Biotechnol 19: 109–114. doi: 10.1016/s0167-7799(00)01542-0
[57]  Christman MF, Morgan RW, Jacobson FS, Ames BN (1985) Positive control of a regulon for defenses against oxidative stress and some heat-shock proteins in Salmonella typhimurium. Cell 41: 753–762. doi: 10.1016/s0092-8674(85)80056-8
[58]  Ibanez-Ruiz M, Robbe-Saule V, Hermant D, Labrude S, Norel F (2000) Identification of RpoS (sigma(S))-regulated genes in Salmonella enterica serovar typhimurium. J Bacteriol 182: 5749–5756. doi: 10.1128/jb.182.20.5749-5756.2000
[59]  Seaver LC, Imlay JA (2004) Are respiratory enzymes the primary sources of intracellular hydrogen peroxide? J Biol Chem 279: 48742–48750. doi: 10.1074/jbc.m408754200
[60]  Carretero-Paulet L, Lipska A, Perez-Gil J, Sangari FJ, Albert VA, et al. (2013) Evolutionary diversification and characterization of the eubacterial gene family encoding DXR type II, an alternative isoprenoid biosynthetic enzyme. BMC Evol Biol 13: 180. doi: 10.1186/1471-2148-13-180
[61]  Borrmann S, Lundgren I, Oyakhirome S, Impouma B, Matsiegui PB, et al. (2006) Fosmidomycin plus clindamycin for treatment of pediatric patients aged 1 to 14 years with Plasmodium falciparum malaria. Antimicrob Agents Chemother 50: 2713–2718. doi: 10.1128/aac.00392-06
[62]  Borrmann S, Issifou S, Esser G, Adegnika AA, Ramharter M, et al. (2004) Fosmidomycin-clindamycin for the treatment of Plasmodium falciparum malaria. J Infect Dis 190: 1534–1540. doi: 10.1086/424603
[63]  Wiesner J, Henschker D, Hutchinson DB, Beck E, Jomaa H (2002) In vitro and in vivo synergy of fosmidomycin, a novel antimalarial drug, with clindamycin. Antimicrob Agents Chemother 46: 2889–2894. doi: 10.1128/aac.46.9.2889-2894.2002
[64]  Clinical and Laboratory Standards Institute (2012) M07-A9 Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria That Grow Aerobically. Wayne, PA: CLSI.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133