Staphylococcus aureus is a prominent bacterial pathogen that causes a diverse range of acute and chronic infections. Recently, it has been demonstrated that the secreted nuclease (Nuc) enzyme is a virulence factor in multiple models of infection, and in vivo expression of nuc has facilitated the development of an infection imaging approach based on Nuc-activatable probes. Interestingly, S. aureus strains encode a second nuclease (Nuc2) that has received limited attention. With the growing interest in bacterial nucleases, we sought to characterize Nuc2 in more detail through localization, expression, and biochemical studies. Fluorescence microscopy and alkaline phosphatase localization approaches using Nuc2-GFP and Nuc2-PhoA fusions, respectively, demonstrated that Nuc2 is membrane bound with the C-terminus facing the extracellular environment, indicating it is a signal-anchored Type II membrane protein. Nuc2 enzyme activity was detectable on the S. aureus cell surface using a fluorescence resonance energy transfer (FRET) assay, and in time courses, both nuc2 transcription and enzyme activity peaked in early logarithmic growth and declined in stationary phase. Using a mouse model of S. aureus pyomyositis, Nuc2 activity was detected with activatable probes in vivo in nuc mutant strains, demonstrating that Nuc2 is produced during infections. To assess Nuc2 biochemical properties, the protein was purified and found to cleave both single- and double-stranded DNA, and it exhibited thermostability and calcium dependence, paralleling the properties of Nuc. Purified Nuc2 prevented biofilm formation in vitro and modestly decreased biomass in dispersal experiments. Altogether, our findings confirm that S. aureus encodes a second, surface-attached and functional DNase that is expressed during infections and displays similar biochemical properties to the secreted Nuc enzyme.
References
[1]
Gordon RJ, Lowy FD (2008) Pathogenesis of methicillin-resistant Staphylococcus aureus infection. Clin Infect Dis 46 Suppl 5S350–359. doi: 10.1086/533591
[2]
DeLeo FR, Chambers HF (2009) Reemergence of antibiotic-resistant Staphylococcus aureus in the genomics era. J Clin Invest 119: 2464–2474. doi: 10.1172/jci38226
[3]
Chambers HF, Deleo FR (2009) Waves of resistance: Staphylococcus aureus in the antibiotic era. Nat Rev Microbiol 7: 629–641. doi: 10.1038/nrmicro2200
[4]
Li M, Diep BA, Villaruz AE, Braughton KR, Jiang X, et al. (2009) Evolution of virulence in epidemic community-associated methicillin-resistant Staphylococcus aureus. Proc Natl Acad Sci USA 106: 5883–5888. doi: 10.1073/pnas.0900743106
[5]
Tsuji BT, Rybak MJ, Cheung CM, Amjad M, Kaatz GW (2007) Community- and health care-associated methicillin-resistant Staphylococcus aureus: a comparison of molecular epidemiology and antimicrobial activities of various agents. Diagn Microbiol Infect Dis 58: 41–47. doi: 10.1016/j.diagmicrobio.2006.10.021
[6]
Loughman JA, Fritz SA, Storch GA, Hunstad DA (2009) Virulence gene expression in human community-acquired Staphylococcus aureus infection. Journal Infectious Diseases 199: 294–301. doi: 10.1086/595982
[7]
David MZ, Daum RS (2010) Community-associated methicillin-resistant Staphylococcus aureus: epidemiology and clinical consequences of an emerging epidemic. Clin Microbiol Rev 23: 616–687. doi: 10.1128/cmr.00081-09
[8]
Montgomery CP, Boyle-Vavra S, Adem PV, Lee JC, Husain AN, et al. (2008) Comparison of virulence in community-associated methicillin-resistant Staphylococcus aureus pulsotypes USA300 and USA400 in a rat model of pneumonia. J Infect Dis 198: 561–570. doi: 10.1086/590157
[9]
Cunningham L, Catlin BW, De Garile MP (1956) A deoxyribonuclease of Micrococcus pyogenes. J Am Chem Soc 78: 4642–4644.
[10]
Tucker PW, Hazen EE Jr, Cotton FA (1978) Staphylococcal nuclease reviewed: a prototypic study in contemporary enzymology. I. Isolation; physical and enzymatic properties. Molecular and cellular biochemistry 22: 67–77. doi: 10.1007/bf00496235
[11]
Cuatrecasas P, Taniuchi H, Anfinsen CB (1968) The structural basis of the catalytic function of staphylococcal nuclease. Brookhaven symposia in biology 21: 172–200.
[12]
Cuatrecasas P, Fuchs S, Anfinsen CB (1967) The binding of nucleotides and calcium to the extracellular nuclease of Staphylococcus aureus. Studies by gel filtration. Journal Biological Chemistry 242: 3063–3067.
[13]
Cuatrecasas P, Fuchs S, Anfinsen CB (1967) Catalytic properties and specificity of the extracellular nuclease of Staphylococcus aureus. Journal Biological Chemistry 242: 1541–1547.
[14]
Tucker PW, Hazen EE Jr, Cotton FA (1979) Staphylococcal nuclease reviewed: a prototypic study in contemporary enzymology. IV. The nuclease as a model for protein folding. Mol Cell Biochem. 23: 131–141. doi: 10.1007/bf00219452
[15]
Berends ET, Horswill AR, Haste NM, Monestier M, Nizet V, et al. (2010) Nuclease expression by Staphylococcus aureus facilitates escape from neutrophil extracellular traps. Journal Innate Immunity 2: 576–586. doi: 10.1159/000319909
[16]
Olson ME, Nygaard TK, Ackermann L, Watkins RL, Zurek OW, et al. (2013) Staphylococcus aureus nuclease is an SaeRS-dependent virulence factor. Infection Immunity 81: 1316–1324. doi: 10.1128/iai.01242-12
[17]
Mann EE, Rice KC, Boles BR, Endres JL, Ranjit D, et al. (2009) Modulation of eDNA release and degradation affects Staphylococcus aureus biofilm maturation. PloS One 4: e5822. doi: 10.1371/journal.pone.0005822
[18]
Kiedrowski MR, Kavanaugh JS, Malone CL, Mootz JM, Voyich JM, et al. (2011) Nuclease modulates biofilm formation in community-associated methicillin-resistant Staphylococcus aureus. PloS One 6: e26714. doi: 10.1371/journal.pone.0026714
[19]
Hernandez FJ, Huang L, Olson ME, Powers KM, Hernandez LI, et al. (2014) Non-invasive Imaging of Staphylococcus aureus Infections with a Nuclease-Activated Probe. Nat Med 20: 301–6. doi: 10.1038/nm.3460
[20]
Hu Y, Meng J, Shi C, Hervin K, Fratamico PM, et al. (2013) Characterization and comparative analysis of a second thermonuclease from Staphylococcus aureus. Microbiol Res 168: 174–182. doi: 10.1016/j.micres.2012.09.003
[21]
Hu Y, Xie Y, Tang J, Shi X (2012) Comparative expression analysis of two thermostable nuclease genes in Staphylococcus aureus. Foodborne Pathogens Dis. 9: 265–271. doi: 10.1089/fpd.2011.1033
[22]
Beenken KE, Spencer H, Griffin LM, Smeltzer MS (2012) Impact of extracellular nuclease production on the biofilm phenotype of Staphylococcus aureus under in vitro and in vivo conditions. Infection Immunity 80: 1634–1638. doi: 10.1128/iai.06134-11
[23]
Tang J, Zhou R, Shi X, Kang M, Wang H, et al. (2008) Two thermostable nucleases coexisted in Staphylococcus aureus: evidence from mutagenesis and in vitro expression. FEMS Microbiology Lett 284: 176–183. doi: 10.1111/j.1574-6968.2008.01194.x
[24]
Schenk S, Laddaga RA (1992) Improved method for electroporation of Staphylococcus aureus. FEMS Microbiol Lett 73: 133–138. doi: 10.1111/j.1574-6968.1992.tb05302.x
[25]
Novick RP (1991) Genetic systems in staphylococci. Methods Enzymol 204: 587–636. doi: 10.1016/0076-6879(91)04029-n
[26]
Bernsel A, Viklund H, Hennerdal A, Elofsson A (2009) TOPCONS: consensus prediction of membrane protein topology. Nucleic acids research 37: W465–468. doi: 10.1093/nar/gkp363
[27]
Kelley LA, Sternberg MJ (2009) Protein structure prediction on the Web: a case study using the Phyre server. Nature protocols 4: 363–371. doi: 10.1038/nprot.2009.2
[28]
Mercer KL, Weiss DS (2002) The Escherichia coli cell division protein FtsW is required to recruit its cognate transpeptidase, FtsI (PBP3), to the division site. J Bacteriol 184: 904–912. doi: 10.1128/jb.184.4.904-912.2002
[29]
Tarry M, Arends SJ, Roversi P, Piette E, Sargent F, et al. (2009) The Escherichia coli cell division protein and model Tat substrate SufI (FtsP) localizes to the septal ring and has a multicopper oxidase-like structure. J Mol Biol 386: 504–519. doi: 10.1016/j.jmb.2008.12.043
[30]
Arends SJ, Kustusch RJ, Weiss DS (2009) ATP-binding site lesions in FtsE impair cell division. J. Bacteriology 191: 3772–3784. doi: 10.1128/jb.00179-09
[31]
Kavanaugh JS, Thoendel M, Horswill AR (2007) A role for type I signal peptidase in Staphylococcus aureus quorum sensing. Molecular Microbiology 65: 780–798. doi: 10.1111/j.1365-2958.2007.05830.x
[32]
Hernandez FJ, Stockdale KR, Huang L, Horswill AR, Behlke MA, et al. (2012) Degradation of nuclease-stabilized RNA oligonucleotides in Mycoplasma-contaminated cell culture media. Nucleic Acid Ther 22: 58–68. doi: 10.1089/nat.2011.0316
[33]
Diep BA, Gill SR, Chang RF, Phan TH, Chen JH, et al. (2006) Complete genome sequence of USA300, an epidemic clone of community-acquired meticillin-resistant Staphylococcus aureus. Lancet 367: 731–739. doi: 10.1016/s0140-6736(06)68231-7
[34]
Davis A, Moore IB, Parker DS, Taniuchi H (1977) Nuclease B. A possible precursor of nuclease A, an extracellular nuclease of Staphylococcus aureus. J Biol Chem 252: 6544–6553.
[35]
Xie K, Dalbey RE (2008) Inserting proteins into the bacterial cytoplasmic membrane using the Sec and YidC translocases. Nat Rev Microbiol 6: 234–244.
[36]
Tang J, Zhou R, Shi X, Kang M, Wang H, et al. (2008) Two thermostable nucleases coexisted in Staphylococcus aureus: evidence from mutagenesis and in vitro expression. FEMS Microbiol Lett 284: 176–183. doi: 10.1111/j.1574-6968.2008.01194.x
[37]
Manoil C (1991) Analysis of membrane protein topology using alkaline phosphatase and beta-galactosidase gene fusions. Methods Cell Biology 34: 61–75. doi: 10.1016/s0091-679x(08)61676-3
[38]
White MJ, Boyd JM, Horswill AR, Nauseef WM (2014) Phosphatidylinositol-specific phospholipase C contributes to survival of Staphylococcus aureus USA300 in human blood and neutrophils. Infect Immun. 82: 1559–71. doi: 10.1128/iai.01168-13
[39]
Kaito C, Hirano T, Omae Y, Sekimizu K (2011) Digestion of extracellular DNA is required for giant colony formation of Staphylococcus aureus. Micro Pathog 51: 142–148. doi: 10.1016/j.micpath.2011.04.007
[40]
Sterba KM, Mackintosh SG, Blevins JS, Hurlburt BK, Smeltzer MS (2003) Characterization of Staphylococcus aureus SarA binding sites. J Bacteriol 185: 4410–4417. doi: 10.1128/jb.185.15.4410-4417.2003
[41]
Nygaard TK, Pallister KB, Ruzevich P, Griffith S, Vuong C, et al. (2010) SaeR binds a consensus sequence within virulence gene promoters to advance USA300 pathogenesis. J Infect Dis 201: 241–254. doi: 10.1086/649570
[42]
Puyet A, Greenberg B, Lacks SA (1990) Genetic and structural characterization of endA. A membrane-bound nuclease required for transformation of Streptococcus pneumoniae. Journal Molecular Biology 213: 727–738. doi: 10.1016/s0022-2836(05)80259-1
[43]
Provvedi R, Chen I, Dubnau D (2001) NucA is required for DNA cleavage during transformation of Bacillus subtilis. Molecular microbiology 40: 634–644. doi: 10.1046/j.1365-2958.2001.02406.x
[44]
Morikawa K, Takemura AJ, Inose Y, Tsai M, Nguyen Thi le T, et al. (2012) Expression of a Cryptic Secondary Sigma Factor Gene Unveils Natural Competence for DNA Transformation in Staphylococcus aureus. PLoS pathogens 8: e1003003. doi: 10.1371/journal.ppat.1003003
[45]
Heun M, Binnenkade L, Kreienbaum M, Thormann KM (2012) Functional specificity of extracellular nucleases of Shewanella oneidensis MR-1. Applied and environmental microbiology 78: 4400–4411. doi: 10.1128/aem.07895-11
[46]
Beenken KE, Dunman PM, McAleese F, Macapagal D, Murphy E, et al. (2004) Global gene expression in Staphylococcus aureus biofilms. Journal Bacteriology 186: 4665–4684. doi: 10.1128/jb.186.14.4665-4684.2004
[47]
Hall-Stoodley L, Costerton JW, Stoodley P (2004) Bacterial biofilms: from the natural environment to infectious diseases. Nat Rev Microbiol 2: 95–108. doi: 10.1038/nrmicro821
[48]
Lawrence JR, Korber DR, Hoyle BD, Costerton JW, Caldwell DE (1991) Optical sectioning of microbial biofilms. J Bacteriol 173: 6558–6567.
Beiter K, Wartha F, Albiger B, Normark S, Zychlinsky A, et al. (2006) An endonuclease allows Streptococcus pneumoniae to escape from neutrophil extracellular traps. Curr Biol 16: 401–407. doi: 10.1016/j.cub.2006.01.056
[51]
Buchanan JT, Simpson AJ, Aziz RK, Liu GY, Kristian SA, et al. (2006) DNase expression allows the pathogen group A Streptococcus to escape killing in neutrophil extracellular traps. Curr Biol 16: 396–400. doi: 10.1016/j.cub.2005.12.039
[52]
Sievers F, Wilm A, Dineen D, Gibson TJ, Karplus K, et al. (2011) Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. Mol Syst Biol 7: 539. doi: 10.1038/msb.2011.75
[53]
Gouet P, Robert X, Courcelle E (2003) ESPript/ENDscript: Extracting and rendering sequence and 3D information from atomic structures of proteins. Nucleic Acids Res 31: 3320–3323. doi: 10.1093/nar/gkg556
[54]
Chen J, Lu Z, Sakon J, Stites WE (2000) Increasing the thermostability of staphylococcal nuclease: implications for the origin of protein thermostability. J Mol Biol 303: 125–130. doi: 10.1006/jmbi.2000.4140
[55]
Datsenko KA, Wanner BL (2000) One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc Natl Acad Sci USA 97: 6640–6645. doi: 10.1073/pnas.120163297
Nair D, Memmi G, Hernandez D, Bard J, Beaume M, et al. (2011) Whole-genome sequencing of Staphylococcus aureus strain RN4220, a key laboratory strain used in virulence research, identifies mutations that affect not only virulence factors but also the fitness of the strain. J Bacteriol 193: 2332–2335. doi: 10.1128/jb.00027-11
[58]
Boles BR, Thoendel M, Roth AJ, Horswill AR (2010) Identification of genes involved in polysaccharide-independent Staphylococcus aureus biofilm formation. PloS One 5: e10146. doi: 10.1371/journal.pone.0010146
[59]
Gillaspy AF, Hickmon SG, Skinner RA, Thomas JR, Nelson CL, et al. (1995) Role of the accessory gene regulator (agr) in pathogenesis of staphylococcal osteomyelitis. Infect Immun 63: 3373–3380.
[60]
Beenken KE, Mrak LN, Griffin LM, Zielinska AK, Shaw LN, et al. (2010) Epistatic relationships between sarA and agr in Staphylococcus aureus biofilm formation. PloS One 5: e10790. doi: 10.1371/journal.pone.0010790
[61]
Lauderdale KJ, Malone CL, Boles BR, Morcuende J, Horswill AR (2010) Biofilm dispersal of community-associated methicillin-resistant Staphylococcus aureus on orthopedic implant material. J Orthop Res 28: 55–61. doi: 10.1002/jor.20943