[1] | David A, Pelosi A, McDonald E, Stephens D, Ledger D, et al. (1990) Tired, weak, or in need of rest: fatigue among general practice attenders. BMJ 301: 1199–1202. doi: 10.1136/bmj.301.6762.1199
|
[2] | Loge JH, Ekeberg O, Kaasa S (1998) Fatigue in the general Norwegian population: normative data and associations. J Psychosom Res 45: 53–65. doi: 10.1016/s0022-3999(97)00291-2
|
[3] | Pawlikowska T, Chalder T, Hirsch SR, Wallace P, Wright DJ, et al. (1994) Population based study of fatigue and psychological distress. BMJ 308: 763–766. doi: 10.1136/bmj.308.6931.763
|
[4] | Cella D, Lai JS, Chang CH, Peterman A, Slavin M (2002) Fatigue in cancer patients compared with fatigue in the general United States population. Cancer 94: 528–538. doi: 10.1002/cncr.10245
|
[5] | van’t Leven M, Zielhuis GA, van der Meer JW, Verbeek AL, Bleijenberg G (2010) Fatigue and chronic fatigue syndrome-like complaints in the general population. Eur J Public Health 20: 251–257. doi: 10.1093/eurpub/ckp113
|
[6] | Watanabe Y (2007) Preface and mini-review: fatigue science for human health. In: Watanabe Y, Eveng?rd B, Natelson B, Jason L, Kuratsune H, editors. Fatigue Science for Human Health. New York: Springer. 5–11.
|
[7] | Chaudhuri A, Behan PO (2004) Fatigue in neurological disorders. Lancet 363: 978–988. doi: 10.1016/s0140-6736(04)15794-2
|
[8] | Tanaka M, Watanabe Y (2010) A new hypothesis of chronic fatigue syndrome: Co-conditioning theory. Med Hypotheses 75: 244–249. doi: 10.1016/j.mehy.2010.02.032
|
[9] | Iwasaki K, Takahashi M, Nakata A (2006) Health problems due to long working hours in Japan: working hours, workers’ compensation (Karoshi), and preventive measures. Ind Health 44: 537–540. doi: 10.2486/indhealth.44.537
|
[10] | Kondo N, Oh J (2010) Suicide and karoshi (death from overwork) during the recent economic crises in Japan: the impacts, mechanisms and political responses. J Epidemiol Community Health 64: 649–650. doi: 10.1136/jech.2009.090787
|
[11] | Cook DB, O’Connor PJ, Lange G, Steffener J (2007) Functional neuroimaging correlates of mental fatigue induced by cognition among chronic fatigue syndrome patients and controls. Neuroimage 36: 108–122. doi: 10.1016/j.neuroimage.2007.02.033
|
[12] | Caseras X, Mataix-Cols D, Rimes KA, Giampietro V, Brammer M, et al. (2008) The neural correlates of fatigue: an exploratory imaginal fatigue provocation study in chronic fatigue syndrome. Psychol Med 38: 941–951. doi: 10.1017/s0033291708003450
|
[13] | Tajima S, Yamamoto S, Tanaka M, Kataoka Y, Iwase M, et al. (2010) Medial orbitofrontal cortex is associated with fatigue sensation. Neurol Res Int 2010: 671421. doi: 10.1155/2010/671421
|
[14] | Ishii A, Tanaka M, Yamano E, Watanabe Y (2012) Neural substrates activated by viewing others expressing fatigue: a magnetoencephalography study. Brain Res 1455: 68–74. doi: 10.1016/j.brainres.2012.03.031
|
[15] | Ishii A, Tanaka M, Yamano E, Watanabe Y (2014) The neural substrates of physical fatigue sensation to evaluate ourselves: a magnetoencephalography study. Neuroscience 261: 60–67. doi: 10.1016/j.neuroscience.2013.12.049
|
[16] | Derbyshire SW, Jones AK (1998) Cerebral responses to a continual tonic pain stimulus measured using positron emission tomography. Pain 76: 127–135. doi: 10.1016/s0304-3959(98)00034-7
|
[17] | Bromm B (2004) The involvement of the posterior cingulate gyrus in phasic pain processing of humans. Neurosci Lett 361: 245–249. doi: 10.1016/j.neulet.2004.01.018
|
[18] | Shao S, Shen K, Yu K, Wilder-Smith EP, Li X (2012) Frequency-domain EEG source analysis for acute tonic cold pain perception. Clin Neurophysiol 123: 2042–2049. doi: 10.1016/j.clinph.2012.02.084
|
[19] | Mochizuki H, Sadato N, Saito DN, Toyoda H, Tashiro M, et al. (2007) Neural correlates of perceptual difference between itching and pain: a human fMRI study. Neuroimage 36: 706–717. doi: 10.1016/j.neuroimage.2007.04.003
|
[20] | Stancak A, Polacek H, Vrana J, Mlynar J (2007) Cortical oscillatory changes during warming and heating in humans. Neuroscience 147: 842–852. doi: 10.1016/j.neuroscience.2007.04.055
|
[21] | Denton D, Shade R, Zamarippa F, Egan G, Blair-West J, et al. (1999) Neuroimaging of genesis and satiation of thirst and an interoceptor-driven theory of origins of primary consciousness. Proc Natl Acad Sci U S A 96: 5304–5309. doi: 10.1073/pnas.96.9.5304
|
[22] | Johnson SC, Baxter LC, Wilder LS, Pipe JG, Heiserman JE, et al. (2002) Neural correlates of self-reflection. Brain 125: 1808–1814. doi: 10.1093/brain/awf181
|
[23] | Grandjean E (1980) Fitting the task to the man: an ergonomic approach.: Taylor & Francis.
|
[24] | Saito K (1999) Measurement of fatigue in industries. Ind Health 37: 134–142. doi: 10.2486/indhealth.37.134
|
[25] | Dinges DF (1995) An overview of sleepiness and accidents. J Sleep Res 4: 4–14. doi: 10.1111/j.1365-2869.1995.tb00220.x
|
[26] | Shen KQ, Li XP, Ong CJ, Shao SY, Wilder-Smith EP (2008) EEG-based mental fatigue measurement using multi-class support vector machines with confidence estimate. Clin Neurophysiol 119: 1524–1533. doi: 10.1016/j.clinph.2008.03.012
|
[27] | Oldfield RC (1971) The assessment and analysis of handedness: the Edinburgh inventory. Neuropsychologia 9: 97–113. doi: 10.1016/0028-3932(71)90067-4
|
[28] | Mathot S, Schreij D, Theeuwes J (2012) OpenSesame: an open-source, graphical experiment builder for the social sciences. Behav Res Methods 44: 314–324. doi: 10.3758/s13428-011-0168-7
|
[29] | Beurskens AJ, Bultmann U, Kant I, Vercoulen JH, Bleijenberg G, et al. (2000) Fatigue among working people: validity of a questionnaire measure. Occup Environ Med 57: 353–357. doi: 10.1136/oem.57.5.353
|
[30] | Aratake Y, Tanaka K, Wada K, Watanabe M, Katoh N, et al. (2007) Development of Japanese version of the checklist individual strength questionnaire in a working population. J Occup Health 49: 453–460. doi: 10.1539/joh.49.453
|
[31] | Lin FH, Witzel T, Ahlfors SP, Stufflebeam SM, Belliveau JW, et al. (2006) Assessing and improving the spatial accuracy in MEG source localization by depth-weighted minimum-norm estimates. Neuroimage 31: 160–171. doi: 10.1016/j.neuroimage.2005.11.054
|
[32] | Dalal SS, Guggisberg AG, Edwards E, Sekihara K, Findlay AM, et al. (2008) Five-dimensional neuroimaging: localization of the time-frequency dynamics of cortical activity. Neuroimage 40: 1686–1700. doi: 10.1016/j.neuroimage.2008.01.023
|
[33] | Yao J, Dewald JP (2005) Evaluation of different cortical source localization methods using simulated and experimental EEG data. Neuroimage 25: 369–382. doi: 10.1016/j.neuroimage.2004.11.036
|
[34] | Mattout J, Phillips C, Penny WD, Rugg MD, Friston KJ (2006) MEG source localization under multiple constraints: an extended Bayesian framework. Neuroimage 30: 753–767. doi: 10.1016/j.neuroimage.2005.10.037
|
[35] | Hillebrand A, Singh KD, Holliday IE, Furlong PL, Barnes GR (2005) A new approach to neuroimaging with magnetoencephalography. Hum Brain Mapp 25: 199–211. doi: 10.1002/hbm.20102
|
[36] | David O, Kilner JM, Friston KJ (2006) Mechanisms of evoked and induced responses in MEG/EEG. Neuroimage 31: 1580–1591. doi: 10.1016/j.neuroimage.2006.02.034
|
[37] | Luo Q, Holroyd T, Jones M, Hendler T, Blair J (2007) Neural dynamics for facial threat processing as revealed by gamma band synchronization using MEG. Neuroimage 34: 839–847. doi: 10.1016/j.neuroimage.2006.09.023
|
[38] | Sekihara K, Nagarajan SS (2008) Adaptive Spatial Filters for Electromagnetic Brain Imaging. Berlin: Springer Verlag.
|
[39] | Pfurtscheller G, Lopes da Silva FH (1999) Event-related EEG/MEG synchronization and desynchronization: basic principles. Clin Neurophysiol 110: 1842–1857. doi: 10.1016/s1388-2457(99)00141-8
|
[40] | Shigihara Y, Tanaka M, Mizuno K, Ishii A, Yamano E, et al. (2012) Effects of daily levels of fatigue and acutely induced fatigue on the visual evoked magnetic response. Brain Res 1457: 44–50. doi: 10.1016/j.brainres.2012.03.056
|
[41] | Ishii A, Tanaka M, Iwamae M, Kim C, Yamano E, et al. (2013) Fatigue sensation induced by the sounds associated with mental fatigue and its related neural activities: revealed by magnetoencephalography. Behav Brain Funct 9: 24. doi: 10.1186/1744-9081-9-24
|
[42] | Tanaka M, Ishii A, Watanabe Y (2013) Neural correlates of central inhibition during physical fatigue. PLoS One 8: e70949. doi: 10.1371/journal.pone.0070949
|
[43] | Bowyer SM, Mason K, Tepley N, Smith B, Barkley GL (2003) Magnetoencephalographic validation parameters for clinical evaluation of interictal epileptic activity. J Clin Neurophysiol 20: 87–93. doi: 10.1097/00004691-200304000-00001
|
[44] | Evans AC, Kamber M, Collins DL, MacDonald D (1994) An MRI-based Probalistic Atlas of Neuroanatomy. Magnetic resonance scanning and epilepsy. New York: Plenum Press. 263–274.
|
[45] | Friston KJ, Holmes AP, Worsley KJ (1999) How many subjects constitute a study? Neuroimage 10: 1–5. doi: 10.1006/nimg.1999.0439
|
[46] | McNemar Q (1947) Note on the sampling error of the difference between correlated proportions or percentages. Psychometrika 12: 153–157. doi: 10.1007/bf02295996
|
[47] | Balconi M, Lucchiari C (2006) EEG correlates (event-related desynchronization) of emotional face elaboration: a temporal analysis. Neurosci Lett 392: 118–123. doi: 10.1016/j.neulet.2005.09.004
|
[48] | Klados MA, Frantzidis C, Vivas AB, Papadelis C, Lithari C, et al. (2009) A framework combining delta Event-Related Oscillations (EROs) and Synchronisation Effects (ERD/ERS) to study emotional processing. Comput Intell Neurosci: 549419.
|
[49] | Fabrizi L, Williams G, Lee A, Meek J, Slater R, et al. (2013) Cortical activity evoked by an acute painful tissue-damaging stimulus in healthy adult volunteers. J Neurophysiol 109: 2393–2403. doi: 10.1152/jn.00990.2012
|
[50] | Tanaka M, Ishii A, Watanabe Y (2013) Neural mechanism of central inhibition during physical fatigue: a magnetoencephalography study. Brain Res 1537: 117–124. doi: 10.1016/j.brainres.2013.08.054
|
[51] | Tanaka M, Ishii A, Watanabe Y (2013) Neural Mechanism of Facilitation System during Physical Fatigue. PLoS One 8: e80731. doi: 10.1371/journal.pone.0080731
|
[52] | Vogt BA, Laureys S (2005) Posterior cingulate, precuneal and retrosplenial cortices: cytology and components of the neural network correlates of consciousness. Prog Brain Res 150: 205–217. doi: 10.1016/s0079-6123(05)50015-3
|
[53] | Vogt BA, Vogt L, Laureys S (2006) Cytology and functionally correlated circuits of human posterior cingulate areas. Neuroimage 29: 452–466. doi: 10.1016/j.neuroimage.2005.07.048
|
[54] | Bechara A, Damasio H, Damasio AR (2000) Emotion, decision making and the orbitofrontal cortex. Cereb Cortex 10: 295–307. doi: 10.1093/cercor/10.3.295
|
[55] | Craig AD (2002) How do you feel? Interoception: the sense of the physiological condition of the body. Nat Rev Neurosci 3: 655–666.
|
[56] | Craig AD (2009) Emotional moments across time: a possible neural basis for time perception in the anterior insula. Philos Trans R Soc Lond B Biol Sci 364: 1933–1942. doi: 10.1098/rstb.2009.0008
|
[57] | Baliki MN, Geha PY, Apkarian AV (2009) Parsing pain perception between nociceptive representation and magnitude estimation. J Neurophysiol 101: 875–887. doi: 10.1152/jn.91100.2008
|
[58] | Otto T, Zijlstra FR, Goebel R (2013) Neural correlates of mental effort evaluation– involvement of structures related to self-awareness. Soc Cogn Affect Neurosci.
|