Cardiac left ventricle hypertrophy (LVH) constitutes a major risk factor for heart failure. Although LVH is most commonly caused by chronic elevation in arterial blood pressure, reduction of blood pressure to normal levels does not always result in regression of LVH, suggesting that additional factors contribute to the development of this pathology. We tested whether genetic preconditions associated with the imbalance in sodium homeostasis could trigger the development of LVH without concomitant increases in blood pressure. The results showed that the presence of a hypertensive variant of α-adducin gene in Milan rats (before they become hypertensive) resulted in elevated expression of genes associated with LVH, and of salt-inducible kinase 2 (SIK2) in the left ventricle (LV). Moreover, the mRNA expression levels of SIK2, α-adducin, and several markers of cardiac hypertrophy were positively correlated in tissue biopsies obtained from human hearts. In addition, we found in cardiac myocytes that α-adducin regulates the expression of SIK2, which in turn mediates the effects of adducin on hypertrophy markers gene activation. Furthermore, evidence that SIK2 is critical for the development of LVH in response to chronic high salt diet (HS) was obtained in mice with ablation of the sik2 gene. Increases in the expression of genes associated with LVH, as well as increases in LV wall thickness upon HS, occurred only in sik2+/+ but not in sik2?/? mice. Thus LVH triggered by HS or the presence of a genetic variant of α-adducin requires SIK2 and is independent of elevated blood pressure. Inhibitors of SIK2 may constitute part of a novel therapeutic regimen aimed at prevention/regression of LVH.
References
[1]
Molkentin JD, Dorn GW 2nd (2001) Cytoplasmic signaling pathways that regulate cardiac hypertrophy. Annu Rev Physiol 63: 391–426.
[2]
Frey N, Olson EN (2003) Cardiac hypertrophy: the good, the bad, and the ugly. Annu Rev Physiol 65: 45–79. doi: 10.1146/annurev.physiol.65.092101.142243
[3]
Marian AJ (2003) On predictors of sudden cardiac death in hypertrophic cardiomyopathy. J Am Coll Cardiol 41: 994–996. doi: 10.1016/s0735-1097(02)03003-6
[4]
de Wardener HE, He FJ, MacGregor GA (2004) Plasma sodium and hypertension. Kidney Int 66: 2454–2466. doi: 10.1111/j.1523-1755.2004.66018.x
[5]
Du Cailar G, Ribstein J, Daures JP, Mimran A (1992) Sodium and left ventricular mass in untreated hypertensive and normotensive subjects. Am J Physiol 263: H177–181.
[6]
Frohlich ED, Varagic J (2004) The role of sodium in hypertension is more complex than simply elevating arterial pressure. Nat Clin Pract Cardiovasc Med 1: 24–30.
[7]
Ferreira DN, Katayama IA, Oliveira IB, Rosa KT, Furukawa LN, et al. (2010) Salt-induced cardiac hypertrophy and interstitial fibrosis are due to a blood pressure-independent mechanism in Wistar rats. J Nutr 140: 1742–1751. doi: 10.3945/jn.109.117473
Wang Z, Takemori H, Halder SK, Nonaka Y, Okamoto M (1999) Cloning of a novel kinase (SIK) of the SNF1/AMPK family from high salt diet-treated rat adrenal. FEBS Lett 453: 135–139. doi: 10.1016/s0014-5793(99)00708-5
[10]
Takemori H, Kanematsu M, Kajimura J, Hatano O, Katoh Y, et al. (2007) Dephosphorylation of TORC initiates expression of the StAR gene. Mol Cell Endocrinol 265–266: 196–204. doi: 10.1016/j.mce.2006.12.020
[11]
Jaleel M, McBride A, Lizcano JM, Deak M, Toth R, et al. (2005) Identification of the sucrose non-fermenting related kinase SNRK, as a novel LKB1 substrate. FEBS Lett 579: 1417–1423. doi: 10.1016/j.febslet.2005.01.042
[12]
Lizcano JM, Goransson O, Toth R, Deak M, Morrice NA, et al. (2004) LKB1 is a master kinase that activates 13 kinases of the AMPK subfamily, including MARK/PAR-1. EMBO J 23: 833–843. doi: 10.1038/sj.emboj.7600110
[13]
Berdeaux R, Goebel N, Banaszynski L, Takemori H, Wandless T, et al. (2007) SIK1 is a class II HDAC kinase that promotes survival of skeletal myocytes. Nat Med 13: 597–603. doi: 10.1038/nm1573
[14]
Koo SH, Flechner L, Qi L, Zhang X, Screaton RA, et al. (2005) The CREB coactivator TORC2 is a key regulator of fasting glucose metabolism. Nature 437: 1109–1111. doi: 10.1038/nature03967
[15]
Sjostrom M, Stenstrom K, Eneling K, Zwiller J, Katz AI, et al. (2007) SIK1 is part of a cell sodium-sensing network that regulates active sodium transport through a calcium-dependent process. Proc Natl Acad Sci U S A 104: 16922–16927. doi: 10.1073/pnas.0706838104
[16]
Jaitovich A, Bertorello AM (2010) Intracellular sodium sensing: SIK1 network, hormone action and high blood pressure. Biochim Biophys Acta 1802: 1140–1149. doi: 10.1016/j.bbadis.2010.03.009
[17]
Stenstrom K, Takemori H, Bianchi G, Katz AI, Bertorello AM (2009) Blocking the salt-inducible kinase 1 network prevents the increases in cell sodium transport caused by a hypertension-linked mutation in human alpha-adducin. J Hypertens 27: 2452–2457. doi: 10.1097/hjh.0b013e328330cf15
[18]
Popov S, Silveira A, Wagsater D, Takemori H, Oguro R, et al. (2011) Salt-inducible kinase 1 influences Na(+),K(+)-ATPase activity in vascular smooth muscle cells and associates with variations in blood pressure. J Hypertens 29: 2395–2403. doi: 10.1097/hjh.0b013e32834d3d55
[19]
Ruiz JC, Conlon FL, Robertson EJ (1994) Identification of novel protein kinases expressed in the myocardium of the developing mouse heart. Mech Dev 48: 153–164. doi: 10.1016/0925-4773(94)90056-6
[20]
Stephenson A, Huang GY, Nguyen NT, Reuter S, McBride JL, et al. (2004) snf1lk encodes a protein kinase that may function in cell cycle regulation. Genomics 83: 1105–1115. doi: 10.1016/j.ygeno.2003.12.007
[21]
Romito A, Lonardo E, Roma G, Minchiotti G, Ballabio A, et al. (2010) Lack of sik1 in mouse embryonic stem cells impairs cardiomyogenesis by down-regulating the cyclin-dependent kinase inhibitor p57kip2. PLoS One 5: e9029. doi: 10.1371/journal.pone.0009029
[22]
Folkersen L, Wagsater D, Paloschi V, Jackson V, Petrini J, et al. (2011) Unraveling divergent gene expression profiles in bicuspid and tricuspid aortic valve patients with thoracic aortic dilatation: the ASAP study. Mol Med 17: 1365–1373.
[23]
Horike N, Kumagai A, Shimono Y, Onishi T, Itoh Y, et al. (2010) Downregulation of SIK2 expression promotes the melanogenic program in mice. Pigment Cell Melanoma Res 23: 809–819. doi: 10.1111/j.1755-148x.2010.00760.x
[24]
Claycomb WC, Lanson NA Jr, Stallworth BS, Egeland DB, Delcarpio JB, et al. (1998) HL-1 cells: a cardiac muscle cell line that contracts and retains phenotypic characteristics of the adult cardiomyocyte. Proc Natl Acad Sci USA 95: 2979–2984. doi: 10.1073/pnas.95.6.2979
[25]
Efendiev R, Krmar RT, Ogimoto G, Zwiller J, Tripodi G, et al. (2004) Hypertension-linked mutation in the adducin alpha-subunit leads to higher AP2-mu2 phosphorylation and impaired Na+, K+-ATPase trafficking in response to GPCR signals and intracellular sodium. Circ Res 95: 1100–1108. doi: 10.1161/01.res.0000149570.20845.89
[26]
Shin HH, Seoh JY, Chung HY, Choi SJ, Hahn MJ, et al. (1999) Requirement of MEF2D in the induced differentiation of HL60 promyeloid cells. Mol Immunol 36: 1209–1214. doi: 10.1016/s0161-5890(99)00140-6
[27]
Katoh Y, Takemori H, Lin XZ, Tamura M, Muraoka M, et al. (2006) Silencing the constitutive active transcription factor CREB by the LKB1-SIK signaling cascade. FEBS J 273: 2730–2748. doi: 10.1111/j.1742-4658.2006.05291.x
[28]
Horike N, Takemori H, Katoh Y, Doi J, Min L, et al. (2003) Adipose-specific expression, phosphorylation of Ser794 in insulin receptor substrate-1, and activation in diabetic animals of salt-inducible kinase-2. J Biol Chem 278: 18440–18447. doi: 10.1074/jbc.m211770200
[29]
Carlson SH, Wyss JM (2000) Long-term telemetric recording of arterial pressure and heart rate in mice fed basal and high NaCl diets. Hypertension 35: E1–5. doi: 10.1161/01.hyp.35.2.e1
[30]
Bianchi G (2005) Genetic variations of tubular sodium reabsorption leading to “primary” hypertension: from gene polymorphism to clinical symptoms. Am J Physiol Regul Integr Comp Physiol 289: R1536–1549. doi: 10.1152/ajpregu.00441.2005
[31]
Ferrandi M, Tripodi G, Salardi S, Florio M, Modica R, et al. (1996) Renal Na,K-ATPase in genetic hypertension. Hypertension 28: 1018–1025. doi: 10.1161/01.hyp.28.6.1018
[32]
Black BL, Olson EN (1998) Transcriptional control of muscle development by myocyte enhancer factor-2 (MEF2) proteins. Annu Rev Cell Dev Biol 14: 167–196. doi: 10.1146/annurev.cellbio.14.1.167
[33]
Popov S, Venetsanou K, Chedrese PJ, Pinto V, Takemori H, et al. (2012) Increases in intracellular sodium activate transcription and gene expression via the salt-inducible kinase 1 network in an atrial myocyte cell line. Am J Physiol Heart Circ Physiol 303: H57–65. doi: 10.1152/ajpheart.00512.2011
[34]
Capasso G, Rizzo M, Evangelista C, Ferrari P, Geelen G, et al. (2005) Altered expression of renal apical plasma membrane Na+ transporters in the early phase of genetic hypertension. Am J Physiol Renal Physiol 288: F1173–1182. doi: 10.1152/ajprenal.00228.2004
[35]
Kometiani P, Li J, Gnudi L, Kahn BB, Askari A, et al. (1998) Multiple signal transduction pathways link Na+/K+-ATPase to growth-related genes in cardiac myocytes. The roles of Ras and mitogen-activated protein kinases. J Biol Chem 273: 15249–15256. doi: 10.1074/jbc.273.24.15249
[36]
Hamlyn JM, Manunta P (2011) Endogenous ouabain: a link between sodium intake and hypertension. Curr Hypertens Rep 13: 14–20. doi: 10.1007/s11906-010-0161-z
[37]
Manunta P, Stella P, Rivera R, Ciurlino D, Cusi D, et al. (1999) Left ventricular mass, stroke volume, and ouabain-like factor in essential hypertension. Hypertension 34: 450–456. doi: 10.1161/01.hyp.34.3.450
[38]
Heineke J, Auger-Messier M, Correll RN, Xu J, Benard MJ, et al. (2010) CIB1 is a regulator of pathological cardiac hypertrophy. Nat Med 16: 872–879. doi: 10.1038/nm.2181
[39]
Shioi T, McMullen JR, Kang PM, Douglas PS, Obata T, et al. (2002) Akt/protein kinase B promotes organ growth in transgenic mice. Mol Cell Biol 22: 2799–2809. doi: 10.1128/mcb.22.8.2799-2809.2002
[40]
Xiao J, Jiang H, Zhang R, Fan G, Zhang Y, et al. (2012) Augmented cardiac hypertrophy in response to pressure overload in mice lacking ELTD1. PLoS One 7: e35779. doi: 10.1371/journal.pone.0035779
[41]
Zhou H, Shen DF, Bian ZY, Zong J, Deng W, et al. (2011) Activating transcription factor 3 deficiency promotes cardiac hypertrophy, dysfunction, and fibrosis induced by pressure overload. PLoS One 6: e26744. doi: 10.1371/journal.pone.0026744