[1] | Ho RS, Fok JS, Harding GE, Smith DW (1978) Host-parasite relationships in experimental airborne tuberculosis. VII. Fate of Mycobacterium tuberculosis in primary lung lesions and in primary lesion-free lung tissue infected as a result of bacillemia. J Infect Dis 138: 237–241. doi: 10.1093/infdis/138.2.237
|
[2] | McMurray DN (2003) Hematogenous reseeding of the lung in low-dose, aerosol-infected guinea pigs: unique features of the host-pathogen interface in secondary tubercles. Tuberculosis (Edinb) 83: 131–134. doi: 10.1016/s1472-9792(02)00079-3
|
[3] | Palanisamy GS, Smith EE, Shanley CA, Ordway DJ, Orme IM, et al. (2008) Disseminated disease severity as a measure of virulence of Mycobacterium tuberculosis in the guinea pig model. Tuberculosis (Edinb) 88: 295–306. doi: 10.1016/j.tube.2007.12.003
|
[4] | Lincoln EM (1935) Hematogenous tuberculosis in children. American Journal of Diseases of Children 50: 84–103. doi: 10.1001/archpedi.1935.01970070093008
|
[5] | Barrios-Payan JA, Saqui-Salces M, Jeyanathan M, Vazquez AA, Arreola MC, et al. (2012) Extrapulmonary Location of Mycobacterium tuberculosis DNA During Latent Infection; accepted for publication. The Journal of Infectious Diseases.
|
[6] | Shapiro L (1932) The frequency of bacillaemia in tuberculosis. American Review of Tuberculosis 26: 418–423.
|
[7] | Clough MC (1917) The Cultivation of Tubercle Bacilli from the Circulating Blood in Miliary Tuberculosis. Bulletin of The Johns Hopkins Hospital XXVIII.
|
[8] | Lillebaek T, Kok-Jensen A, Viskum K (2002) Bacillarity at autopsy in pulmonary tuberculosis. Mycobacterium tuberculosis is often disseminated. APMIS 110: 625–629. doi: 10.1034/j.1600-0463.2002.1100905.x
|
[9] | WHO (2012) Global Tuberculosis Report.
|
[10] | WHO (2012-2013) TB/HIV facts.
|
[11] | Gupta A, Wood R, Kaplan R, Bekker LG, Lawn SD (2012) Tuberculosis incidence rates during 8 years of follow-up of an antiretroviral treatment cohort in South Africa: comparison with rates in the community. PLoS One 7: e34156. doi: 10.1371/journal.pone.0034156
|
[12] | Diedrich CR, Flynn JL (2011) HIV-1/mycobacterium tuberculosis coinfection immunology: how does HIV-1 exacerbate tuberculosis? Infect Immun 79: 1407–1417. doi: 10.1128/iai.01126-10
|
[13] | Hanson DL, Chu SY, Farizo KM, Ward JW (1995) Distribution of CD4+ T lymphocytes at diagnosis of acquired immunodeficiency syndrome-defining and other human immunodeficiency virus-related illnesses. The Adult and Adolescent Spectrum of HIV Disease Project Group. Arch Intern Med 155: 1537–1542. doi: 10.1001/archinte.155.14.1537
|
[14] | Mukadi Y, Perriens JH, St Louis ME, Brown C, Prignot J, et al. (1993) Spectrum of immunodeficiency in HIV-1-infected patients with pulmonary tuberculosis in Zaire. Lancet 342: 143–146. doi: 10.1016/0140-6736(93)91346-n
|
[15] | Diedrich CR, Mattila JT, Klein E, Janssen C, Phuah J, et al. (2010) Reactivation of latent tuberculosis in cynomolgus macaques infected with SIV is associated with early peripheral T cell depletion and not virus load. PLoS One 5: e9611. doi: 10.1371/journal.pone.0009611
|
[16] | Shafer RW, Kim DS, Weiss JP, Quale JM (1991) Extrapulmonary tuberculosis in patients with human immunodeficiency virus infection. Medicine (Baltimore) 70: 384–397. doi: 10.1097/00005792-199111000-00004
|
[17] | Onorato IM, McCray E (1992) Prevalence of human immunodeficiency virus infection among patients attending tuberculosis clinics in the United States. J Infect Dis 165: 87–92. doi: 10.1093/infdis/165.1.87
|
[18] | Yang Z, Kong Y, Wilson F, Foxman B, Fowler AH, et al. (2004) Identification of risk factors for extrapulmonary tuberculosis. Clin Infect Dis 38: 199–205. doi: 10.1086/380644
|
[19] | Golden MP, Vikram HR (2005) Extrapulmonary tuberculosis: an overview. Am Fam Physician 72: 1761–1768.
|
[20] | Naing C, Mak JW, Maung M, Wong SF, Kassim AI (2013) Meta-analysis: the association between HIV infection and extrapulmonary tuberculosis. Lung 191: 27–34. doi: 10.1007/s00408-012-9440-6
|
[21] | Shafer RW, Goldberg R, Sierra M, Glatt AE (1989) Frequency of Mycobacterium tuberculosis bacteremia in patients with tuberculosis in an area endemic for AIDS. Am Rev Respir Dis 140: 1611–1613. doi: 10.1164/ajrccm/140.6.1611
|
[22] | Barber TW, Craven DE, McCabe WR (1990) Bacteremia due to Mycobacterium tuberculosis in patients with human immunodeficiency virus infection. A report of 9 cases and a review of the literature. Medicine (Baltimore) 69: 375–383. doi: 10.1097/00005792-199011000-00005
|
[23] | Clark RA, Blakley SL, Greer D, Smith MH, Brandon W, et al. (1991) Hematogenous dissemination of Mycobacterium tuberculosis in patients with AIDS. Rev Infect Dis 13: 1089–1092. doi: 10.1093/clinids/13.6.1089
|
[24] | Bouza E, Diaz-Lopez MD, Moreno S, Bernaldo de Quiros JC, Vicente T, et al. (1993) Mycobacterium tuberculosis bacteremia in patients with and without human immunodeficiency virus infection. Arch Intern Med 153: 496–500. doi: 10.1001/archinte.1993.00410040062009
|
[25] | Gopinath K, Kumar S, Singh S (2008) Prevalence of mycobacteremia in Indian HIV-infected patients detected by the MB/BacT automated culture system. Eur J Clin Microbiol Infect Dis 27: 423–431. doi: 10.1007/s10096-007-0450-x
|
[26] | Peters RP, Zijlstra EE, Schijffelen MJ, Walsh AL, Joaki G, et al. (2004) A prospective study of bloodstream infections as cause of fever in Malawi: clinical predictors and implications for management. Trop Med Int Health 9: 928–934. doi: 10.1111/j.1365-3156.2004.01288.x
|
[27] | Echenique-Rivera H, Muzzi A, Del Tordello E, Seib KL, Francois P, et al. (2011) Transcriptome analysis of Neisseria meningitidis in human whole blood and mutagenesis studies identify virulence factors involved in blood survival. PLoS Pathog 7: e1002027. doi: 10.1371/journal.ppat.1002027
|
[28] | Toledo-Arana A, Dussurget O, Nikitas G, Sesto N, Guet-Revillet H, et al. (2009) The Listeria transcriptional landscape from saprophytism to virulence. Nature 459: 950–956. doi: 10.1038/nature08080
|
[29] | Graham MR, Virtaneva K, Porcella SF, Barry WT, Gowen BB, et al. (2005) Group A Streptococcus transcriptome dynamics during growth in human blood reveals bacterial adaptive and survival strategies. Am J Pathol 166: 455–465. doi: 10.1016/s0002-9440(10)62268-7
|
[30] | Mereghetti L, Sitkiewicz I, Green NM, Musser JM (2008) Extensive adaptive changes occur in the transcriptome of Streptococcus agalactiae (group B streptococcus) in response to incubation with human blood. PLoS One 3: e3143. doi: 10.1371/journal.pone.0003143
|
[31] | Fang X, Wallqvist A, Reifman J (2012) Modeling phenotypic metabolic adaptations of Mycobacterium tuberculosis H37Rv under hypoxia. PLoS Comput Biol 8: e1002688. doi: 10.1371/journal.pcbi.1002688
|
[32] | Fisher MA, Plikaytis BB, Shinnick TM (2002) Microarray analysis of the Mycobacterium tuberculosis transcriptional response to the acidic conditions found in phagosomes. J Bacteriol 184: 4025–4032. doi: 10.1128/jb.184.14.4025-4032.2002
|
[33] | Betts JC, Lukey PT, Robb LC, McAdam RA, Duncan K (2002) Evaluation of a nutrient starvation model of Mycobacterium tuberculosis persistence by gene and protein expression profiling. Mol Microbiol 43: 717–731. doi: 10.1046/j.1365-2958.2002.02779.x
|
[34] | Voskuil MI, Visconti KC (2004) Schoolnik GK (2004) Mycobacterium tuberculosis gene expression during adaptation to stationary phase and low-oxygen dormancy. Tuberculosis (Edinb) 84: 218–227. doi: 10.1016/j.tube.2004.02.003
|
[35] | Via LE, Lin PL, Ray SM, Carrillo J, Allen SS, et al. (2008) Tuberculous granulomas are hypoxic in guinea pigs, rabbits, and nonhuman primates. Infect Immun 76: 2333–2340. doi: 10.1128/iai.01515-07
|
[36] | Rohde KH, Abramovitch RB, Russell DG (2007) Mycobacterium tuberculosis invasion of macrophages: linking bacterial gene expression to environmental cues. Cell Host Microbe 2: 352–364. doi: 10.1016/j.chom.2007.09.006
|
[37] | Schnappinger D, Ehrt S, Voskuil MI, Liu Y, Mangan JA, et al. (2003) Transcriptional Adaptation of Mycobacterium tuberculosis within Macrophages: Insights into the Phagosomal Environment. J Exp Med 198: 693–704. doi: 10.1084/jem.20030846
|
[38] | Cappelli G, Volpe E, Grassi M, Liseo B, Colizzi V, et al. (2006) Profiling of Mycobacterium tuberculosis gene expression during human macrophage infection: upregulation of the alternative sigma factor G, a group of transcriptional regulators, and proteins with unknown function. Res Microbiol 157: 445–455. doi: 10.1016/j.resmic.2005.10.007
|
[39] | Talaat AM, Lyons R, Howard ST, Johnston SA (2004) The temporal expression profile of Mycobacterium tuberculosis infection in mice. Proc Natl Acad Sci U S A 101: 4602–4607. doi: 10.1073/pnas.0306023101
|
[40] | Rachman H, Strong M, Ulrichs T, Grode L, Schuchhardt J, et al. (2006) Unique transcriptome signature of Mycobacterium tuberculosis in pulmonary tuberculosis. Infect Immun 74: 1233–1242. doi: 10.1128/iai.74.2.1233-1242.2006
|
[41] | Kinhikar A, Verma I, Chandra D, Singh KK, Weldingh K, et al. (2010) Potential Role for ESAT-6 in Dissemination of M. tuberculosis via Human Lung Epithelial Cells. Mol Microbiol 75: 92–106. doi: 10.1111/j.1365-2958.2009.06959.x
|
[42] | Hsu T, Hingley-Wilson SM, Chen B, Chen M, Dai AZ, et al. (2003) The primary mechanism of attenuation of bacillus Calmette-Guerin is a loss of secreted lytic function required for invasion of lung interstitial tissue. Proc Natl Acad Sci U S A 100: 12420–12425. doi: 10.1073/pnas.1635213100
|
[43] | Newton S, Martineau A, Kampmann B (2011) A functional whole blood assay to measure viability of mycobacteria, using reporter-gene tagged BCG or M.Tb (BCGlux/M.Tb lux). J Vis Exp.
|
[44] | Zhang M, Gong J, Lin Y, Barnes PF (1998) Growth of virulent and avirulent Mycobacterium tuberculosis strains in human macrophages. Infect Immun 66: 794–799.
|
[45] | Vandal OH, Pierini LM, Schnappinger D, Nathan CF, Ehrt S (2008) A membrane protein preserves intrabacterial pH in intraphagosomal Mycobacterium tuberculosis. Nat Med 14: 849–854. doi: 10.1038/nm.1795
|
[46] | Leistikow RL, Morton RA, Bartek IL, Frimpong I, Wagner K, et al. (2010) The Mycobacterium tuberculosis DosR regulon assists in metabolic homeostasis and enables rapid recovery from nonrespiring dormancy. J Bacteriol 192: 1662–1670. doi: 10.1128/jb.00926-09
|
[47] | Sherman D.R VM, Schnappinger D, Liao R (2001) Harrell M.I. and Schoolnik G.K (2001) Regulation of the Mycobacterium tuberculosis hypoxic response gene encoding alpha-crystallin. PNAS 98: 7534–7539. doi: 10.1073/pnas.121172498
|
[48] | Voskuil MI, Schnappinger D, Visconti KC, Harrell MI, Dolganov GM, et al. (2003) Inhibition of respiration by nitric oxide induces a Mycobacterium tuberculosis dormancy program. J Exp Med 198: 705–713. doi: 10.1084/jem.20030205
|
[49] | Majumdar SD, Vashist A, Dhingra S, Gupta R, Singh A, et al. (2012) Appropriate DevR (DosR)-mediated signaling determines transcriptional response, hypoxic viability and virulence of Mycobacterium tuberculosis. PLoS One 7: e35847. doi: 10.1371/journal.pone.0035847
|
[50] | Zahrt TC, Deretic V (2001) Mycobacterium tuberculosis signal transduction system required for persistent infections. Proc Natl Acad Sci U S A 98: 12706–12711. doi: 10.1073/pnas.221272198
|
[51] | Bretl DJ, He H, Demetriadou C, White MJ, Penoske RM, et al. (2012) MprA and DosR coregulate a Mycobacterium tuberculosis virulence operon encoding Rv1813c and Rv1812c. Infect Immun 80: 3018–3033. doi: 10.1128/iai.00520-12
|
[52] | Kana BD, Gordhan BG, Downing KJ, Sung N, Vostroktunova G, et al. (2008) The resuscitation-promoting factors of Mycobacterium tuberculosis are required for virulence and resuscitation from dormancy but are collectively dispensable for growth in vitro. Mol Microbiol 67: 672–684. doi: 10.1111/j.1365-2958.2007.06078.x
|
[53] | Bryk R, Lima CD, Erdjument-Bromage H, Tempst P, Nathan C (2002) Metabolic enzymes of mycobacteria linked to antioxidant defense by a thioredoxin-like protein. Science 295: 1073–1077. doi: 10.1126/science.1067798
|
[54] | Jaeger T, Budde H, Flohe L, Menge U, Singh M, et al. (2004) Multiple thioredoxin-mediated routes to detoxify hydroperoxides in Mycobacterium tuberculosis. Arch Biochem Biophys 423: 182–191. doi: 10.1016/j.abb.2003.11.021
|
[55] | Bryk R, Griffin P, Nathan C (2000) Peroxynitrite reductase activity of bacterial peroxiredoxins. Nature 407: 211–215. doi: 10.1038/35025109
|
[56] | Springer B, Master S, Sander P, Zahrt T, McFalone M, et al. (2001) Silencing of oxidative stress response in Mycobacterium tuberculosis: expression patterns of ahpC in virulent and avirulent strains and effect of ahpC inactivation. Infect Immun 69: 5967–5973. doi: 10.1128/iai.69.10.5967-5973.2001
|
[57] | Kumar A, Farhana A, Guidry L, Saini V, Hondalus M, et al. (2011) Redox homeostasis in mycobacteria: the key to tuberculois control? Expert Rev Mol Med 13.
|
[58] | Imlay JA, Chin SM, Linn S (1988) Toxic DNA damage by hydrogen peroxide through the Fenton reaction in vivo and in vitro. Science 240: 640–642. doi: 10.1126/science.2834821
|
[59] | Trivedi A, Singh N, Bhat SA, Gupta P, Kumar A (2012) Redox biology of tuberculosis pathogenesis. Adv Microb Physiol 60: 263–324. doi: 10.1016/b978-0-12-398264-3.00004-8
|
[60] | Waddell SJ, Butcher PD (2007) Microarray analysis of whole genome expression of intracellular Mycobacterium tuberculosis. Curr Mol Med 7: 287–296. doi: 10.2174/156652407780598548
|
[61] | Sohaskey CD, Wayne LG (2003) Role of narK2X and narGHJI in hypoxic upregulation of nitrate reduction by Mycobacterium tuberculosis. J Bacteriol 185: 7247–7256. doi: 10.1128/jb.185.24.7247-7256.2003
|
[62] | Wayne LG, Hayes LG (1998) Nitrate reduction as a marker for hypoxic shiftdown of Mycobacterium tuberculosis. Tuber Lung Dis 79: 127–132. doi: 10.1054/tuld.1998.0015
|
[63] | Tan MP, Sequeira P, Lin WW, Phong WY, Cliff P, et al. (2010) Nitrate respiration protects hypoxic Mycobacterium tuberculosis against acid- and reactive nitrogen species stresses. PLoS One 5: e13356. doi: 10.1371/journal.pone.0013356
|
[64] | Narberhaus F (1999) Negative regulation of bacterial heat shock genes. Mol Microbiol 31: 1–8. doi: 10.1046/j.1365-2958.1999.01166.x
|
[65] | Hartl FU (1996) Molecular chaperones in cellular protein folding. Nature 381: 571–579. doi: 10.1038/381571a0
|
[66] | Young D, Roman E, Moreno C, O'Brien R, Born W (1993) Molecular chaperones and the immune response. Philos Trans R Soc Lond B Biol Sci 339: 363–367 discussion 367–368.
|
[67] | Bulut Y, Michelsen KS, Hayrapetian L, Naiki Y, Spallek R, et al. (2005) Mycobacterium tuberculosis heat shock proteins use diverse Toll-like receptor pathways to activate pro-inflammatory signals. J Biol Chem 280: 20961–20967. doi: 10.1074/jbc.m411379200
|
[68] | Stewart GR, Snewin VA, Walzl G, Hussell T, Tormay P, et al. (2001) Overexpression of heat-shock proteins reduces survival of Mycobacterium tuberculosis in the chronic phase of infection. Nat Med 7: 732–737.
|
[69] | Silva CL (1999) The potential use of heat-shock proteins to vaccinate against mycobacterial infections. Microbes Infect 1: 429–435. doi: 10.1016/s1286-4579(99)80046-x
|
[70] | Doherty TM (2012) Immunotherapy for TB. Immunotherapy 4: 629–647. doi: 10.2217/imt.12.52
|
[71] | Brennan PJ (2003) Structure, function, and biogenesis of the cell wall of Mycobacterium tuberculosis. Tuberculosis (Edinb) 83: 91–97. doi: 10.1016/s1472-9792(02)00089-6
|
[72] | Onwueme KC, Vos CJ, Zurita J, Ferreras JA, Quadri LE (2005) The dimycocerosate ester polyketide virulence factors of mycobacteria. Prog Lipid Res 44: 259–302. doi: 10.1016/j.plipres.2005.07.001
|
[73] | Reed MB, Domenech P, Manca C, Su H, Barczak AK, et al. (2004) A glycolipid of hypervirulent tuberculosis strains that inhibits the innate immune response. Nature 431: 84–87. doi: 10.1038/nature02837
|
[74] | Tsenova L, Ellison E, Harbacheuski R, Moreira AL, Kurepina N, et al. (2005) Virulence of selected Mycobacterium tuberculosis clinical isolates in the rabbit model of meningitis is dependent on phenolic glycolipid produced by the bacilli. J Infect Dis 192: 98–106. doi: 10.1086/430614
|
[75] | Constant P, Perez E, Malaga W, Laneelle MA, Saurel O, et al. (2002) Role of the pks15/1 gene in the biosynthesis of phenolglycolipids in the Mycobacterium tuberculosis complex. Evidence that all strains synthesize glycosylated p-hydroxybenzoic methyl esters and that strains devoid of phenolglycolipids harbor a frameshift mutation in the pks15/1 gene. J Biol Chem 277: 38148–38158. doi: 10.1074/jbc.m206538200
|
[76] | Tian C, Jian-Ping X (2010) Roles of PE_PGRS family in Mycobacterium tuberculosis pathogenesis and novel measures against tuberculosis. Microb Pathog 49: 311–314. doi: 10.1016/j.micpath.2010.07.004
|
[77] | Sampson SL (2011) Mycobacterial PE/PPE proteins at the host-pathogen interface. Clin Dev Immunol 2011: 497203. doi: 10.1155/2011/497203
|
[78] | Akhter Y, Ehebauer MT, Mukhopadhyay S, Hasnain SE (2012) The PE/PPE multigene family codes for virulence factors and is a possible source of mycobacterial antigenic variation: perhaps more? Biochimie 94: 110–116. doi: 10.1016/j.biochi.2011.09.026
|
[79] | DiGiuseppe Champion PA, Cox JS (2007) Protein secretion systems in Mycobacteria. Cell Microbiol 9: 1376–1384. doi: 10.1111/j.1462-5822.2007.00943.x
|
[80] | Lewis KN, Liao R, Guinn KM, Hickey MJ, Smith S, et al. (2003) Deletion of RD1 from Mycobacterium tuberculosis mimics bacille Calmette-Guerin attenuation. J Infect Dis 187: 117–123. doi: 10.1086/345862
|
[81] | Guinn KM, Hickey MJ, Mathur SK, Zakel KL, Grotzke JE, et al. (2004) Individual RD1-region genes are required for export of ESAT-6/CFP-10 and for virulence of Mycobacterium tuberculosis. Mol Microbiol 51: 359–370. doi: 10.1046/j.1365-2958.2003.03844.x
|
[82] | Smith J, Manoranjan J, Pan M, Bohsali A, Xu J, et al. (2008) Evidence for pore formation in host cell membranes by ESX-1-secreted ESAT-6 and its role in Mycobacterium marinum escape from the vacuole. Infect Immun 76: 5478–5487. doi: 10.1128/iai.00614-08
|
[83] | Mariotti S, Pardini M, Gagliardi MC, Teloni R, Giannoni F, et al. (2013) Dormant Mycobacterium tuberculosis fails to block phagosome maturation and shows unexpected capacity to stimulate specific human T lymphocytes. J Immunol 191: 274–282. doi: 10.4049/jimmunol.1202900
|
[84] | Gennaro ML, Affouf M, Kanaujia GV, Brusasca PN, Mangura B, et al. (2007) Antibody markers of incident tuberculosis among HIV-infected adults in the USA: a historical prospective study. Int J Tuberc Lung Dis 11: 624–631.
|
[85] | Sani M, Houben EN, Geurtsen J, Pierson J, de Punder K, et al. (2010) Direct visualization by cryo-EM of the mycobacterial capsular layer: a labile structure containing ESX-1-secreted proteins. PLoS Pathog 6: e1000794. doi: 10.1371/journal.ppat.1000794
|
[86] | Daleke MH, Ummels R, Bawono P, Heringa J, Vandenbroucke-Grauls CM, et al. (2012) General secretion signal for the mycobacterial type VII secretion pathway. Proc Natl Acad Sci U S A 109: 11342–11347. doi: 10.1073/pnas.1119453109
|
[87] | Abdallah AM, Verboom T, Weerdenburg EM, Gey van Pittius NC, Mahasha PW, et al. (2009) PPE and PE_PGRS proteins of Mycobacterium marinum are transported via the type VII secretion system ESX-5. Mol Microbiol 73: 329–340. doi: 10.1111/j.1365-2958.2009.06783.x
|
[88] | Bottai D, Di Luca M, Majlessi L, Frigui W, Simeone R, et al. (2012) Disruption of the ESX-5 system of Mycobacterium tuberculosis causes loss of PPE protein secretion, reduction of cell wall integrity and strong attenuation. Mol Microbiol 83: 1195–1209. doi: 10.1111/j.1365-2958.2012.08001.x
|
[89] | Pallen MJ (2002) The ESAT-6/WXG100 superfamily — and a new Gram-positive secretion system? Trends Microbiol 10: 209–212. doi: 10.1016/s0966-842x(02)02345-4
|
[90] | Rodriguez GM, Voskuil MI, Gold B (2002) Schoolnik GK, Smith I (2002) ideR, An essential gene in mycobacterium tuberculosis: role of IdeR in iron-dependent gene expression, iron metabolism, and oxidative stress response. Infect Immun 70: 3371–3381. doi: 10.1128/iai.70.7.3371-3381.2002
|
[91] | Reddy PV, Puri RV, Khera A, Tyagi AK (2011) Iron storage proteins are essential for the survival and pathogenesis of Mycobacterium tuberculosis in THP-1 macrophages and the guinea pig model of infection. J Bacteriol 194: 567–575. doi: 10.1128/jb.05553-11
|
[92] | Sartain MJ, Slayden RA, Singh KK, Laal S, Belisle JT (2006) Disease state differentiation and identification of tuberculosis biomarkers via native antigen profiling. Mol Cel Proteomics 5: 2102–2113. doi: 10.1074/mcp.m600089-mcp200
|
[93] | Shen G, Behera D, Bhalla M, Nadas A, Laal S (2009) Peptide-Based Antibody Detection for Tuberculosis Diagnosis. Clin Vaccine Immunol 16: 49–54. doi: 10.1128/cvi.00334-08
|
[94] | Jurado RL (1997) Iron, infections, and anemia of inflammation. Clin Infect Dis 25: 888–895. doi: 10.1086/515549
|
[95] | Gobin J, Horwitz MA (1996) Exochelins of Mycobacterium tuberculosis remove iron from human iron-binding proteins and donate iron to mycobactins in the M. tuberculosis cell wall. J Exp Med 183: 1527–1532. doi: 10.1084/jem.183.4.1527
|
[96] | Genco CA, Dixon DW (2001) Emerging strategies in microbial haem capture. Mol Microbiol 39: 1–11. doi: 10.1046/j.1365-2958.2001.02231.x
|
[97] | Tong Y, Guo M (2009) Bacterial heme-transport proteins and their heme-coordination modes. Arch Biochem Biophys 481: 1–15. doi: 10.1016/j.abb.2008.10.013
|
[98] | Jones CM, Niederweis M (2011) Mycobacterium tuberculosis can utilize heme as an iron source. J Bacteriol 193: 1767–1770. doi: 10.1128/jb.01312-10
|
[99] | Tullius MV, Harmston CA, Owens CP, Chim N, Morse RP, et al. (2011) Discovery and characterization of a unique mycobacterial heme acquisition system. Proc Natl Acad Sci U S A 108: 5051–5056. doi: 10.1073/pnas.1009516108
|
[100] | Owens CP, Du J, Dawson JH, Goulding CW (2012) Characterization of heme ligation properties of Rv0203, a secreted heme binding protein involved in Mycobacterium tuberculosis heme uptake. Biochemistry 51: 1518–1531. doi: 10.1021/bi2018305
|
[101] | Lee SW, Kang YA, Yoon YS, Um SW, Lee SM, et al. (2006) The prevalence and evolution of anemia associated with tuberculosis. J Korean Med Sci 21: 1028–1032. doi: 10.3346/jkms.2006.21.6.1028
|
[102] | Das BS, Devi U, Mohan Rao C, Srivastava VK, Rath PK (2003) Effect of iron supplementation on mild to moderate anaemia in pulmonary tuberculosis. Br J Nutr 90: 541–550. doi: 10.1079/bjn2003936
|
[103] | Safe IP, O'Brien C, Ferreira FR, Souza ML, Ramasawmy R (2013) Tuberculosis associated with transient hemolytic anemia responsive to tuberculosis chemotherapy: a case report. Braz J Infect Dis 17: 110–111. doi: 10.1016/j.bjid.2012.04.004
|
[104] | Jacob ST, Pavlinac PB, Nakiyingi L, Banura P, Baeten JM, et al. (2013) Mycobacterium tuberculosis Bacteremia in a Cohort of HIV-Infected Patients Hospitalized with Severe Sepsis in Uganda-High Frequency, Low Clinical Sand Derivation of a Clinical Prediction Score. PLoS One 8: e70305. doi: 10.1371/journal.pone.0070305
|
[105] | Lewis DK, Peters RP, Schijffelen MJ, Joaki GR, Walsh AL, et al. (2002) Clinical indicators of mycobacteraemia in adults admitted to hospital in Blantyre, Malawi. Int J Tuberc Lung Dis 6: 1067–1074. doi: 10.4314/mmj.v15i2.10778
|
[106] | Tan CK, Lai CC, Liao CH, Chou CH, Hsu HL, et al. (2010) Mycobacterial bacteraemia in patients infected and not infected with human immunodeficiency virus, Taiwan. Clin Microbiol Infect 16: 627–630. doi: 10.1111/j.1469-0691.2009.02939.x
|
[107] | Mert A, Seyhan C, Ozaras R, Altin S (2007) Mycobacterium tuberculosis bacteraemia in non-HIV tuberculosis reactivation patients. Respirology 12: 311. doi: 10.1111/j.1440-1843.2006.01011.x
|
[108] | Chiu YS, Wang JT, Chang SC, Tang JL, Ku SC, et al. (2007) Mycobacterium tuberculosis bacteremia in HIV-negative patients. J Formos Med Assoc 106: 355–364.
|
[109] | Narang S, Fernandez ID, Chin N, Lerner N, Weinberg GA (2012) Bacteremia in children with sickle hemoglobinopathies. J Pediatr Hematol Oncol 34: 13–16. doi: 10.1097/mph.0b013e318240d50d
|
[110] | Fontan P, Aris V, Ghanny S, Soteropoulos P, Smith I (2008) Global transcriptional profile of Mycobacterium tuberculosis during THP-1 human macrophage infection. Infect Immun 76: 717–725. doi: 10.1128/iai.00974-07
|
[111] | Choudhary RK, Mukhopadhyay S, Chakhaiyar P, Sharma N, Murthy KJ, et al. (2003) PPE antigen Rv2430c of Mycobacterium tuberculosis induces a strong B-cell response. Infect Immun 71: 6338–6343. doi: 10.1128/iai.71.11.6338-6343.2003
|
[112] | Badri M, Ehrlich R, Wood R, Pulerwitz T, Maartens G (2001) Association between tuberculosis and HIV disease progression in a high tuberculosis prevalence area. Int J Tuberc Lung Dis 5: 225–232.
|
[113] | Lopez-Gatell H, Cole SR, Hessol NA, French AL, Greenblatt RM, et al. (2007) Effect of tuberculosis on the survival of women infected with human immunodeficiency virus. Am J Epidemiol 165: 1134–1142. doi: 10.1093/aje/kwk116
|
[114] | Goletti D, Weissman D, Jackson RW, Graham NM, Vlahov D, et al. (1996) Effect of Mycobacterium tuberculosis on HIV replication. Role of immune activation. J Immunol 157: 1271–1278.
|
[115] | Nakata K, Rom WN, Honda Y, Condos R, Kanegasaki S, et al. (1997) Mycobacterium tuberculosis enhances human immunodeficiency virus-1 replication in the lung. Am J Respir Crit Care Med 155: 996–1003. doi: 10.1164/ajrccm.155.3.9117038
|
[116] | Toossi Z, Sierra-Madero JG, Blinkhorn RA, Mettler MA, Rich EA (1993) Enhanced Susceptibility of Blood Monocytes from Ptients with Pulmonary Tuberculosis to Productive Infection with Human Immunodeficiency Virus Type 1. J Exp Med 177: 1511–1516. doi: 10.1084/jem.177.5.1511
|
[117] | Lederman MM, Georges DL, Kusner DJ, Mudido P, Giam CZ, et al. (1994) Mycobacterium tuberculosis and its purified protein derivative activate expression of the human immunodeficiency virus. J Acquir Immune Defic Syndr 7: 727–733.
|
[118] | Pym AS, Brodin P, Brosch R, Huerre M, Cole ST (2002) Loss of RD1 contributed to the attenuation of the live tuberculosis vaccines Mycobacterium bovis BCG and Mycobacterium microti. Mol Microbiol 46: 709–717. doi: 10.1046/j.1365-2958.2002.03237.x
|
[119] | Gu S, Chen J, Dobos KM, Bradbury EM, Belisle JT, et al. (2003) Comprehensive proteomic profiling of the membrane constituents of a Mycobacterium tuberculosis strain. Mol Cell Proteomics 2: 1284–1296. doi: 10.1074/mcp.m300060-mcp200
|
[120] | Sonnenberg MG, Belisle JT (1997) Definition of Mycobacterium tuberculosis culture filtrate proteins by two-dimensional polyacrylamide gel electrophoresis, N-terminal amino acid sequencing and electrospray mass spectrometry. Infect Immun 65: 4515–4524.
|
[121] | Andersen P, Askgaard D, Ljungqvist L, Bennedsen J, Heron I (1991) Proteins released from Mycobacterium tuberculosis during growth. Infect Immun 59: 1905–1910.
|
[122] | Laal S, Samanich KM, Sonnenberg GM, Zolla-Pazner S, Phadtare JM, et al. (1997) Human humoral responses to antigens of Mycobacterium tuberculosis:immunodominance of high molecular mass antigens. Clin Diag Lab Imunnol 4: 49–56.
|
[123] | Kinhikar A, Vargas D, Li H, Mahaffey SB, Hinds L, et al. (2006) Mycobacterium tuberculosis malate synthase is a laminin binding adhesin. Mol Microbiol 60: 999–1013. doi: 10.1111/j.1365-2958.2006.05151.x
|
[124] | Esteban J, de Gorgolas M, Santos-O'Connor F, Gadea I, Fernandez-Roblas R, et al. (2001) Mycobacterium tuberculosis bacteremia in a university hospital. Int J Tuberc Lung Dis 5: 763–768.
|
[125] | Lawn SD, Bekker LG, Wood R (2005) How effectively does HAART restore immune responses to Mycobacterium tuberculosis? Implications for tuberculosis control. AIDS 19: 1113–1124. doi: 10.1097/01.aids.0000176211.08581.5a
|
[126] | Ong CK, Tan WC, Leong KN, Muttalif AR (2008) Tuberculosis-HIV Coinfection: The Relationship Between Manifestation of Tuberculosis and the Degree of Immunosupression (CD4 Counts). International E-Journal of Science, Medicine, and Education 2: 17–22.
|
[127] | Harris TG, Li J, Hanna DB, Munsiff SS (2010) Changing sociodemographic and clinical characteristics of tuberculosis among HIV-infected patients, New York City, 1992-2005. Clin Infect Dis 50: 1524–1531. doi: 10.1086/652654
|
[128] | Sawant KV, McMurray DN (2007) Guinea pig neutrophils infected with Mycobacterium tuberculosis produce cytokines which activate alveolar macrophages in noncontact cultures. Infect Immun 75: 1870–1877. doi: 10.1128/iai.00858-06
|
[129] | Sawant KV, Cho H, Lyons M, Ly LH, McMurray DN (2010) Guinea pig neutrophil-macrophage interactions during infection with Mycobacterium tuberculosis. Microbes Infect 12: 828–837. doi: 10.1016/j.micinf.2010.05.009
|
[130] | Mihret A (2012) The role of dendritic cells in Mycobacterium tuberculosis infection. Virulence 3: 654–659. doi: 10.4161/viru.22586
|
[131] | Arora P, Foster EL, Porcelli SA (2013) CD1d and natural killer T cells in immunity to Mycobacterium tuberculosis. Adv Exp Med Biol 783: 199–223. doi: 10.1007/978-1-4614-6111-1_11
|
[132] | Meraviglia S, El Daker S, Dieli F, Martini F, Martino A (2011) gammadelta T cells cross-link innate and adaptive immunity in Mycobacterium tuberculosis infection. Clin Dev Immunol 2011: 587315. doi: 10.1155/2011/587315
|
[133] | Jaillon S, Galdiero MR, Del Prete D, Cassatella MA, Garlanda C, et al. (2013) Neutrophils in innate and adaptive immunity. Semin Immunopathol 35: 377–394. doi: 10.1007/s00281-013-0374-8
|
[134] | Korbel DS, Schneider BE, Schaible UE (2008) Innate immunity in tuberculosis: myths and truth. Microbes Infect 10: 995–1004. doi: 10.1016/j.micinf.2008.07.039
|
[135] | Ridruechai C, Sakurada S, Yanai H, Yamada N, Kantipong P, et al. (2011) Association between circulating full-length osteopontin and IFN-gamma with disease status of tuberculosis and response to successful treatment. Southeast Asian J Trop Med Public Health 42: 876–889.
|
[136] | Pavan Kumar N, Anuradha R, Andrade BB, Suresh N, Ganesh R, et al. (2013) Circulating biomarkers of pulmonary and extrapulmonary tuberculosis in children. Clin Vaccine Immunol 20: 704–711. doi: 10.1128/cvi.00038-13
|
[137] | Wallis RS, Palaci M, Vinhas S, Hise AG, Ribeiro FC, et al. (2001) A whole blood bactericidal assay for tuberculosis. J Infect Dis 183: 1300–1303. doi: 10.1086/319679
|
[138] | Cheon SH, Kampmann B, Hise AG, Phillips M, Song HY, et al. (2002) Bactericidal activity in whole blood as a potential surrogate marker of immunity after vaccination against tuberculosis. Clin Diagn Lab Immunol 9: 901–907. doi: 10.1128/cdli.9.4.901-907.2002
|
[139] | Kampmann B, Gaora PO, Snewin VA, Gares MP, Young DB, et al. (2000) Evaluation of human antimycobacterial immunity using recombinant reporter mycobacteria. J Infect Dis 182: 895–901. doi: 10.1086/315766
|
[140] | Dubnau E, Fontan P, Manganelli R, Soares-Appel S, Smith I (2002) Mycobacterium tuberculosis genes induced during infection of human macrophages. Infect Immun 70: 2787–2795. doi: 10.1128/iai.70.6.2787-2795.2002
|
[141] | Schlingemann J, Thuerigen O, Ittrich C, Toedt G, Kramer H, et al. (2005) Effective transcriptome amplification for expression profiling on sense-oriented oligonucleotide microarrays. Nucleic Acids Res 33: e29. doi: 10.1093/nar/gni029
|
[142] | Garton NJ, Waddell SJ, Sherratt AL, Lee SM, Smith RJ, et al. (2008) Cytological and transcript analyses reveal fat and lazy persister-like bacilli in tuberculous sputum. PLoS Med 5: e75. doi: 10.1371/journal.pmed.0050075
|
[143] | Waddell SJ, Laing K, Senner C, Butcher PD (2008) Microarray analysis of defined Mycobacterium tuberculosis populations using RNA amplification strategies. BMC Genomics 9: 94. doi: 10.1186/1471-2164-9-94
|
[144] | Dudoit D, Yang YH, Callow MJ, Speed TP (2000) Statistical methods for identifying differentially expressed genes in replicated cDNA microarray experiments. Technical report no.578. Department of Statistics, University of California. Berkeley.
|
[145] | Tusher VG, Tibshirani R, Chu G (2001) Significance analysis of microarrays applied to the ionizing radiation response. Proc Natl Acad Sci U S A 98: 5116–5121. doi: 10.1073/pnas.091062498
|
[146] | Nyambi PN, Mbah HA, Burda S, Williams C, Gorny MK, et al. (2000) Conserved and exposed epitopes on intact, native, primary human immunodeficiency virus type 1 virions of group M. J Virol. 74: 7096–7107. doi: 10.1128/jvi.74.15.7096-7107.2000
|
[147] | Gorny MK, Gianakakos V, Sharpe S, Zolla-Pazner S (1989) Generation of human monoclonal antibodies to human immunodeficiency virus. Proc Natl Acad Sci U S A 86: 1624–1628. doi: 10.1073/pnas.86.5.1624
|
[148] | Nyambi PN, Gorny MK, Bastiani L, van der Groen G, Williams C, et al. (1998) Mapping of epitopes exposed on intact human immunodeficiency virus type 1 (HIV-1) virions: a new strategy for studying the immunologic relatedness of HIV-1. J Virol 72: 9384–9391.
|