Prediction Models Discriminating between Nonlocomotive and Locomotive Activities in Children Using a Triaxial Accelerometer with a Gravity-removal Physical Activity Classification Algorithm
The aims of our study were to examine whether a gravity-removal physical activity classification algorithm (GRPACA) is applicable for discrimination between nonlocomotive and locomotive activities for various physical activities (PAs) of children and to prove that this approach improves the estimation accuracy of a prediction model for children using an accelerometer. Japanese children (42 boys and 26 girls) attending primary school were invited to participate in this study. We used a triaxial accelerometer with a sampling interval of 32 Hz and within a measurement range of ±6 G. Participants were asked to perform 6 nonlocomotive and 5 locomotive activities. We measured raw synthetic acceleration with the triaxial accelerometer and monitored oxygen consumption and carbon dioxide production during each activity with the Douglas bag method. In addition, the resting metabolic rate (RMR) was measured with the subject sitting on a chair to calculate metabolic equivalents (METs). When the ratio of unfiltered synthetic acceleration (USA) and filtered synthetic acceleration (FSA) was 1.12, the rate of correct discrimination between nonlocomotive and locomotive activities was excellent, at 99.1% on average. As a result, a strong linear relationship was found for both nonlocomotive (METs = 0.013×synthetic acceleration +1.220, R2 = 0.772) and locomotive (METs = 0.005×synthetic acceleration +0.944, R2 = 0.880) activities, except for climbing down and up. The mean differences between the values predicted by our model and measured METs were ?0.50 to 0.23 for moderate to vigorous intensity (>3.5 METs) PAs like running, ball throwing and washing the floor, which were regarded as unpredictable PAs. In addition, the difference was within 0.25 METs for sedentary to mild moderate PAs (<3.5 METs). Our specific calibration model that discriminates between nonlocomotive and locomotive activities for children can be useful to evaluate the sedentary to vigorous PAs intensity of both nonlocomotive and locomotive activities.
References
[1]
Nader PR, Bradley RH, Houts RM, McRitchie SL, O’Brien M (2008) Moderate-to-vigorous physical activity from ages 9 to 15 years. JAMA 300, 295–305.
[2]
Strong WB, Malina RM, Blimkie CJ, Daniels SR, Dishman RK, et al.. (2005) Evidence based physical activity for school-age youth. J Pediatr 146, 732–737.
[3]
Janssen I (2007) Physical activity guidelines for children and youth. Can J Public Health 98 Suppl 2, S109–S121.
[4]
Bailey RC, Olson J, Pepper SL, Porszasz J, Barstow TJ, et al.. (1995) The level and tempo of children’s physical activities: an observational study. Med Sci Sports Exerc 27, 1033–1041.
[5]
Edwardson CL, Gorely T (2010) Epoch length and its effect on physical activity intensity. Med Sci Sports Exerc 42, 928–934.
[6]
Bratteby LE, Sandhagen B, Fan H, Samuelson G (1997) A 7-day activity diary for assessment of daily energy expenditure validated by the doubly labelled water method in adolescents. Eur J Clin Nutr 51, 585–591.
[7]
Plasqui G, Westerterp KR (2007) Physical activity assessment with accelerometers: an evaluation against doubly labeled water. Obesity (Silver Spring) 15, 2371–2379.
[8]
de Graauw SM, de Groot JF, van Brussel M, Streur MF, Takken T (2010) Review of prediction models to estimate activity-related energy expenditure in children and adolescents. Int J Pediatr 2010, 489304.
[9]
Tanaka C, Tanaka S, Kawahara J, Midorikawa T (2007) Triaxial accelerometry for assessment of physical activity in young children. Obesity (Silver Spring) 15, 1233–1241.
[10]
Freedson P, Pober D, Janz KF (2005) Calibration of accelerometer output for children. Med Sci Sports Exerc 37(11 Suppl), S523–S530.
[11]
Rowlands AV, Thomas PW, Eston RG, Topping R (2004) Validation of the RT3 triaxial accelerometer for the assessment of physical activity. Med Sci Sports Exerc 36, 518–524.
[12]
Hendelman D, Miller K, Baggett C, Debold E, Freedson P (2000) Validity of accelerometry for the assessment of moderate intensity physical activity in the field. Med Sci Sports Exerc 32(9 Suppl), S442–S449.
[13]
Heil DP (2006) Predicting activity energy expenditure using the Actical activity monitor. Res Q Exerc Sport 77, 64–80.
[14]
Eston RG, Rowlands AV, Ingledew DK (1998) Validity of heart rate, pedometry, and accelerometry for predicting the energy cost of children’s activities. J Appl Physiol 84, 362–371.
[15]
Puyau MR, Adolph AL, Vohra FA, Zakeri I, Butte NF (2004) Prediction of activity energy expenditure using accelerometers in children. Med Sci Sports Exerc 36, 1625–1631.
[16]
Treuth MS, Schmitz K, Catellier DJ, McMurray RG, Murray DM (2004) Defining accelerometer thresholds for activity intensities in adolescent girls. Med Sci Sports Exerc 36, 1259–1266.
[17]
Crouter SE, Horton M, Bassett DR Jr (2012) Use of a Two-Regression Model for Estimating Energy Expenditure in Children. Med Sci Sports Exerc 44, 1177–85.
[18]
Midorikawa T, Tanaka S, Kaneko K, Koizumi K, Ishikawa-Takata K, et al.. (2007) Evaluation of low-intensity physical activity by triaxial accelerometry. Obesity (Silver Spring) 15, 3031–3038.
[19]
Hikihara Y, Shigeho T, Ohkawara K, Ishikawa-Takata K, Tabata I (2012) Validation and comparison of 3 accelerometers for measuring physical activity intensity during nonlocomotive activities and locomotive movements. J Phys Act Health 9: 935–43.
[20]
Ohkawara K, Oshima Y, Hikihara Y, Ishikawa-Takata K, Tabata I, et al.. (2011) Real-time estimation of daily physical activity intensity by a triaxial accelerometer and a gravity-removal classification algorithm. Br J Nutr 25, 1–11.
[21]
Oshima Y, Kawaguchi K, Tanaka S, Ohkawara K, Hikihara Y, et al.. (2010) Classifying household and locomotive activities using a triaxial accelerometer. Gait Posture 31, 370–374.
[22]
Amorim PR, Byrne NM, Hills AP (2007) Combined effect of body position, apparatus and distraction on children’s resting metabolic rate. Int J Pediatr Obes 2, 249–256.
[23]
Pate RR, Almeida MJ, McIver KL, Pfeiffer KA, Dowda M (2000) Validation and calibration of an accelerometer in preschool children. Obesity (Silver Spring) 14, 2000–2006.
[24]
Weir JB (1949) New methods for calculating metabolic rate with special reference to protein metabolism. J Physiol 109, 1–9.
[25]
Ogawa T, Ohba K, Nabekura Y, Nagai J, Hayashi K, et al.. (2005) Intermittent short-term graded running performance in middle-distance runners in hypobaric hypoxia. Eur J Appl Physiol. 94, 254–61.
[26]
Ainsworth BE, Haskell WL, Whitt MC, Irwin ML, Swartz AM, et al.. (2000) Compendium of physical activities: an update of activity codes and MET intensities. Med Sci Sports Exerc 2000 32(9 Suppl), S498–S504.
[27]
Ridley K, Ainsworth BE, Olds TS (2008) Development of a compendium of energy expenditures for youth. Int J Behav Nutr Phys Act 5, 45.
[28]
Bland JM, Altman DG (1986) Statistical methods for assessing agreement between two methods of clinical measurement. Lancet 1, 307–310.
[29]
Janz KF (1994) Validation of the CSA accelerometer for assessing children’s physical activity. Med Sci Sports Exerc 26, 369–375.
[30]
Trost SG, Ward DS, Moorehead SM, Watson PD, Riner W, et al.. (1998) Validity of the computer science and applications (CSA) activity monitor in children. Med Sci Sports Exerc 30, 629–633.
[31]
Allor KM, Pivarnik JM, Sam LJ, Perkins CD (2000) Treadmill economy in girls and women matched for height and weight. J Appl Physiol 89, 512–516.
[32]
Schmitz KH, Treuth M, Hannan P, McMurray R, Ring KB, et al.. (2005) Predicting energy expenditure from accelerometry counts in adolescent girls. Med Sci Sports Exerc 37, 155–161.
[33]
Chu EY, McManus AM, Yu CC (2007) Calibration of the RT3 accelerometer for ambulation and nonambulation in children. Med Sci Sports Exerc 39, 2085–2091.
[34]
Puyau MR, Adolph AL, Vohra FA, Butte NF (2002) Validation and calibration of physical activity monitors in children. Obes Res 10, 150–157.
[35]
Alhassan S, Lyden K, Howe C, Kozey Keadle S, Nwaokelemeh O, et al.. (2012) Accuracy of accelerometer regression models in predicting energy expenditure and METs in children and youth.
[36]
Crouter SE, Horton M, Bassett DR Jr (2013) Validity of ActiGraph child-specific equations during various physical activity. Med Sci Sports Exerc 45, 1403–09.
[37]
Westerterp KR (2009) Assessment of physical activity: a critical appraisal. Eur J Appl Physiol. 105, 823–28.