全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS ONE  2014 

The Aryl Hydrocarbon Receptor Is Constitutively Active in Advanced Prostate Cancer Cells

DOI: 10.1371/journal.pone.0095058

Full-Text   Cite this paper   Add to My Lib

Abstract:

Background Distant prostate cancers are commonly hormone refractory and exhibit increased growth no longer inhibited by androgen deprivation therapy. Understanding all molecular mechanisms contributing to uncontrolled growth is important to obtain effective treatment strategies for hormone refractory prostate cancers (HRPC). The aryl hydrocarbon receptor (AhR) affects a number of biological processes including cell growth and differentiation. Several studies have revealed that exogenous AhR ligands inhibit cellular proliferation but recent evidence suggests AhR may possess intrinsic functions that promote cellular proliferation in the absence of exogenous ligands. Methods/Results qRT-PCR and western blot analysis was used to determine AhR mRNA and protein expression in hormone sensitive LNCaP cells as well as hormone refractory DU145, PC3 and PC3M prostate cancer cell lines. LNCaP cells express AhR mRNA and protein at a much lower level than the hormone refractory cell models. Cellular fractionation and immunocytochemistry revealed nuclear localization of AhR in the established hormone refractory cell lines while LNCaP cells are devoid of nuclear AhR protein. qRT-PCR analysis used to assess basal CYP1B1 levels and a xenobiotic responsive element binding assay confirmed ligand independent transcriptional activity of AhR in DU145, PC3 and PC3M cells. Basal CYP1B1 levels were decreased by treatment with specific AhR inhibitor, CH223191. An in vitro growth assay revealed that CH223191 inhibited growth of DU145, PC3 and PC3M cells in an androgen depleted environment. Immunohistochemical staining of prostate cancer tissues revealed increased nuclear localization of AhR in grade 2 and grade 3 cancers compared to the well differentiated grade 1 cancers. Conclusions Together, these results show that AhR is constitutively active in advanced prostate cancer cell lines that model hormone refractory prostate cancer. Chemical ablation of AhR signaling can reduce the growth of advanced prostate cancer cells, an effect not achieved with androgen receptor inhibitors or growth in androgen depleted media.

References

[1]  Siegel R, Naishadham D, Jemal A (2013) Cancer statistics, 2013. CA Cancer J Clin 63: 11–30. doi: 10.3322/caac.21166
[2]  Society AC (2012) Cancer Treatment and Survivorship Facts and Figures 2012–2013. American Cancer Society.
[3]  Society AC (2013) Cancer Prevention and Early Detection Facts and Figures 2013. American Cancer Society
[4]  Mohler JL, Gregory CW, Ford OH, Kim D, Weaver CM, et al. (2004) The androgen axis in recurrent prostate cancer. Clin Cancer Res 10: 440–448. doi: 10.1158/1078-0432.ccr-1146-03
[5]  Agoulnik IU, Weigel NL (2006) Androgen receptor action in hormone-dependent and recurrent prostate cancer. J Cell Biochem 99: 362–372. doi: 10.1002/jcb.20811
[6]  Seruga B, Tannock IF Chemotherapy-based treatment for castration-resistant prostate cancer. J Clin Oncol 29: 3686–3694. doi: 10.1200/jco.2010.34.3996
[7]  Mao HL, Zhu ZQ, Chen CD (2009) The androgen receptor in hormone-refractory prostate cancer. Asian J Androl 11: 69–73. doi: 10.1038/aja.2008.14
[8]  Kollara A, Brown TJ (2009) Modulation of aryl hydrocarbon receptor activity by four and a half LIM domain 2. Int J Biochem Cell Biol 41: 1182–1188. doi: 10.1016/j.biocel.2008.10.019
[9]  Kollara A, Brown TJ (2010) Four and a half LIM domain 2 alters the impact of aryl hydrocarbon receptor on androgen receptor transcriptional activity. J Steroid Biochem Mol Biol 118: 51–58. doi: 10.1016/j.jsbmb.2009.09.017
[10]  Poland A, Knutson JC (1982) 2,3,7,8-tetrachlorodibenzo-p-dioxin and related halogenated aromatic hydrocarbons: examination of the mechanism of toxicity. Annu Rev Pharmacol Toxicol 22: 517–554. doi: 10.1146/annurev.pa.22.040182.002505
[11]  Perdew GH, Bradfield CA (1996) Mapping the 90 kDa heat shock protein binding region of the Ah receptor. Biochem Mol Biol Int 39: 589–593. doi: 10.1080/15216549600201651
[12]  Kazlauskas A, Poellinger L, Pongratz I (1999) Evidence that the co-chaperone p23 regulates ligand responsiveness of the dioxin (Aryl hydrocarbon) receptor. J Biol Chem 274: 13519–13524. doi: 10.1074/jbc.274.19.13519
[13]  Meyer BK, Pray-Grant MG, Vanden Heuvel JP, Perdew GH (1998) Hepatitis B virus X-associated protein 2 is a subunit of the unliganded aryl hydrocarbon receptor core complex and exhibits transcriptional enhancer activity. Mol Cell Biol 18: 978–988.
[14]  Enan E, Matsumura F (1996) Identification of c-Src as the integral component of the cytosolic Ah receptor complex, transducing the signal of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) through the protein phosphorylation pathway. Biochem Pharmacol 52: 1599–1612. doi: 10.1016/s0006-2952(96)00566-7
[15]  Pollenz RS (1996) The aryl-hydrocarbon receptor, but not the aryl-hydrocarbon receptor nuclear translocator protein, is rapidly depleted in hepatic and nonhepatic culture cells exposed to 2,3,7,8-tetrachlorodibenzo-p-dioxin. Mol Pharmacol 49: 391–398.
[16]  Bacsi SG, Reisz-Porszasz S, Hankinson O (1995) Orientation of the heterodimeric aryl hydrocarbon (dioxin) receptor complex on its asymmetric DNA recognition sequence. Mol Pharmacol 47: 432–438.
[17]  Whitlock JP Jr, Denison MS, Fisher JM, Shen ES (1989) Induction of hepatic cytochrome P450 gene expression by 2,3,7,8-tetrachlorodibenzo-p-dioxin. Mol Biol Med 6: 169–178.
[18]  Alexander DL, Eltom SE, Jefcoate CR (1997) Ah receptor regulation of CYP1B1 expression in primary mouse embryo-derived cells. Cancer Res 57: 4498–4506.
[19]  Mimura J, Ema M, Sogawa K, Fujii-Kuriyama Y (1999) Identification of a novel mechanism of regulation of Ah (dioxin) receptor function. Genes Dev 13: 20–25. doi: 10.1101/gad.13.1.20
[20]  Baba T, Mimura J, Gradin K, Kuroiwa A, Watanabe T, et al. (2001) Structure and expression of the Ah receptor repressor gene. J Biol Chem 276: 33101–33110. doi: 10.1074/jbc.m011497200
[21]  Prokipcak RD, Okey AB (1991) Downregulation of the Ah receptor in mouse hepatoma cells treated in culture with 2,3,7,8-tetrachlorodibenzo-p-dioxin. Can J Physiol Pharmacol 69: 1204–1210. doi: 10.1139/y91-176
[22]  Jana NR, Sarkar S, Ishizuka M, Yonemoto J, Tohyama C, et al. (1999) Cross-talk between 2,3,7,8-tetrachlorodibenzo-p-dioxin and testosterone signal transduction pathways in LNCaP prostate cancer cells. Biochem Biophys Res Commun 256: 462–468. doi: 10.1006/bbrc.1999.0367
[23]  Barnes-Ellerbe S, Knudsen KE, Puga A (2004) 2,3,7,8-Tetrachlorodibenzo-p-dioxin blocks androgen-dependent cell proliferation of LNCaP cells through modulation of pRB phosphorylation. Mol Pharmacol 66: 502–511. doi: 10.1124/mol.104.000356
[24]  Morrow D, Qin C, Smith R 3rd, Safe S (2004) Aryl hydrocarbon receptor-mediated inhibition of LNCaP prostate cancer cell growth and hormone-induced transactivation. J Steroid Biochem Mol Biol 88: 27–36. doi: 10.1016/j.jsbmb.2003.10.005
[25]  Ohtake F, Fujii-Kuriyama Y, Kato S (2009) AhR acts as an E3 ubiquitin ligase to modulate steroid receptor functions. Biochem Pharmacol 77: 474–484. doi: 10.1016/j.bcp.2008.08.034
[26]  Ikuta T, Tachibana T, Watanabe J, Yoshida M, Yoneda Y, et al. (2000) Nucleocytoplasmic shuttling of the aryl hydrocarbon receptor. J Biochem 127: 503–509. doi: 10.1093/oxfordjournals.jbchem.a022633
[27]  Chang JT, Chang H, Chen PH, Lin SL, Lin P (2007) Requirement of aryl hydrocarbon receptor overexpression for CYP1B1 up-regulation and cell growth in human lung adenocarcinomas. Clin Cancer Res 13: 38–45. doi: 10.1158/1078-0432.ccr-06-1166
[28]  Lin P, Chang H, Ho WL, Wu MH, Su JM (2003) Association of aryl hydrocarbon receptor and cytochrome P4501B1 expressions in human non-small cell lung cancers. Lung Cancer 42: 255–261. doi: 10.1016/s0169-5002(03)00359-3
[29]  Tran C, Richmond O, Aaron L, Powell JB (2013) Inhibition of constitutive aryl hydrocarbon receptor (AhR) signaling attenuates androgen independent signaling and growth in (C4–2) prostate cancer cells. Biochem Pharmacol 85: 753–762. doi: 10.1016/j.bcp.2012.12.010
[30]  Yang X, Solomon S, Fraser LR, Trombino AF, Liu D, et al. (2008) Constitutive regulation of CYP1B1 by the aryl hydrocarbon receptor (AhR) in pre-malignant and malignant mammary tissue. J Cell Biochem 104: 402–417. doi: 10.1002/jcb.21630
[31]  Chang CY, Puga A (1998) Constitutive activation of the aromatic hydrocarbon receptor. Mol Cell Biol 18: 525–535.
[32]  Kashani M, Steiner G, Haitel A, Schaufler K, Thalhammer T, et al. (1998) Expression of the aryl hydrocarbon receptor (AhR) and the aryl hydrocarbon receptor nuclear translocator (ARNT) in fetal, benign hyperplastic, and malignant prostate. Prostate 37: 98–108. doi: 10.1002/(sici)1097-0045(19981001)37:2<98::aid-pros6>3.3.co;2-j
[33]  Gluschnaider U, Hidas G, Cojocaru G, Yutkin V, Ben-Neriah Y, et al. beta-TrCP inhibition reduces prostate cancer cell growth via upregulation of the aryl hydrocarbon receptor. PLoS One 5: e9060. doi: 10.1371/journal.pone.0009060
[34]  Horoszewicz JS, Leong SS, Chu TM, Wajsman ZL, Friedman M, et al. (1980) The LNCaP cell line–a new model for studies on human prostatic carcinoma. Prog Clin Biol Res 37: 115–132.
[35]  Gleave M, Hsieh JT, Gao CA, von Eschenbach AC, Chung LW (1991) Acceleration of human prostate cancer growth in vivo by factors produced by prostate and bone fibroblasts. Cancer Res 51: 3753–3761.
[36]  Lim DJ, Liu XL, Sutkowski DM, Braun EJ, Lee C, et al. (1993) Growth of an androgen-sensitive human prostate cancer cell line, LNCaP, in nude mice. Prostate 22: 109–118. doi: 10.1002/pros.2990220203
[37]  Kaighn ME, Narayan KS, Ohnuki Y, Lechner JF, Jones LW (1979) Establishment and characterization of a human prostatic carcinoma cell line (PC-3). Invest Urol 17: 16–23.
[38]  Stone KR, Mickey DD, Wunderli H, Mickey GH, Paulson DF (1978) Isolation of a human prostate carcinoma cell line (DU 145). Int J Cancer 21: 274–281. doi: 10.1002/ijc.2910210305
[39]  Kozlowski JM, Fidler IJ, Campbell D, Xu ZL, Kaighn ME, et al. (1984) Metastatic behavior of human tumor cell lines grown in the nude mouse. Cancer Res 44: 3522–3529.
[40]  Kurzawski M, Dziedziejko V, Post M, Wojcicki M, Urasinska E, et al. Expression of genes involved in xenobiotic metabolism and transport in end-stage liver disease: up-regulation of ABCC4 and CYP1B1. Pharmacol Rep 64: 927–939. doi: 10.1016/s1734-1140(12)70888-5
[41]  Lemm F, Wilhelm M, Roos PH (2004) Occupational exposure to polycyclic aromatic hydrocarbons suppresses constitutive expression of CYP1B1 on the transcript level in human leukocytes. Int J Hyg Environ Health 207: 325–335. doi: 10.1078/1438-4639-00298
[42]  Kerzee JK, Ramos KS (2001) Constitutive and inducible expression of Cyp1a1 and Cyp1b1 in vascular smooth muscle cells: role of the Ahr bHLH/PAS transcription factor. Circ Res 89: 573–582. doi: 10.1161/hh1901.097083
[43]  Jung NK, Park JY, Park JH, Kim SY, Park JK, et al. (2010) Attenuation of cell cycle progression by 2,3,7,8-tetrachlorodibenzo-p-dioxin eliciting ovulatory blockade in gonadotropin-primed immature rats. Endocr J 57: 863–871. doi: 10.1507/endocrj.k10e-220
[44]  Hruba E, Vondracek J, Libalova H, Topinka J, Bryja V, et al. (2011) Gene expression changes in human prostate carcinoma cells exposed to genotoxic and nongenotoxic aryl hydrocarbon receptor ligands. Toxicol Lett 206: 178–188. doi: 10.1016/j.toxlet.2011.07.011
[45]  Wang T, Wyrick KL, Meadows GG, Wills TB, Vorderstrasse BA (2011) Activation of the aryl hydrocarbon receptor by TCDD inhibits mammary tumor metastasis in a syngeneic mouse model of breast cancer. Toxicol Sci 124: 291–298. doi: 10.1093/toxsci/kfr247
[46]  Kizu R, Okamura K, Toriba A, Kakishima H, Mizokami A, et al. (2003) A role of aryl hydrocarbon receptor in the antiandrogenic effects of polycyclic aromatic hydrocarbons in LNCaP human prostate carcinoma cells. Arch Toxicol 77: 335–343.
[47]  Endo F, Monsees TK, Akaza H, Schill WB, Pflieger-Bruss S (2003) Effects of single non-ortho, mono-ortho, and di-ortho chlorinated biphenyls on cell functions and proliferation of the human prostatic carcinoma cell line, LNCaP. Reprod Toxicol 17: 229–236. doi: 10.1016/s0890-6238(02)00126-0
[48]  Sanada N, Gotoh Y, Shimazawa R, Klinge CM, Kizu R (2009) Repression of activated aryl hydrocarbon receptor-induced transcriptional activation by 5alpha-dihydrotestosterone in human prostate cancer LNCaP and human breast cancer T47D cells. J Pharmacol Sci 109: 380–387. doi: 10.1254/jphs.08328fp
[49]  Barhoover MA, Hall JM, Greenlee WF, Thomas RS (2010) Aryl hydrocarbon receptor regulates cell cycle progression in human breast cancer cells via a functional interaction with cyclin-dependent kinase 4. Mol Pharmacol 77: 195–201. doi: 10.1124/mol.109.059675
[50]  Brooks J, Eltom SE (2011) Malignant transformation of mammary epithelial cells by ectopic overexpression of the aryl hydrocarbon receptor. Curr Cancer Drug Targets 11: 654–669. doi: 10.2174/156800911795655967
[51]  Dever DP, Opanashuk LA (2012) The aryl hydrocarbon receptor contributes to the proliferation of human medulloblastoma cells. Mol Pharmacol 81: 669–678. doi: 10.1124/mol.111.077305
[52]  Schroeder JC, Dinatale BC, Murray IA, Flaveny CA, Liu Q, et al. (2010) The uremic toxin 3-indoxyl sulfate is a potent endogenous agonist for the human aryl hydrocarbon receptor. Biochemistry 49: 393–400. doi: 10.1021/bi901786x
[53]  Goode GD, Ballard BR, Manning HC, Freeman ML, Kang Y, et al. (2013) Knockdown of aberrantly upregulated aryl hydrocarbon receptor reduces tumor growth and metastasis of MDA-MB-231 human breast cancer cell line. Int J Cancer 133: 2769–2780. doi: 10.1002/ijc.28297

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133