全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS ONE  2014 

Recombinase-Mediated Reprogramming and Dystrophin Gene Addition in mdx Mouse Induced Pluripotent Stem Cells

DOI: 10.1371/journal.pone.0096279

Full-Text   Cite this paper   Add to My Lib

Abstract:

A cell therapy strategy utilizing genetically-corrected induced pluripotent stem cells (iPSC) may be an attractive approach for genetic disorders such as muscular dystrophies. Methods for genetic engineering of iPSC that emphasize precision and minimize random integration would be beneficial. We demonstrate here an approach in the mdx mouse model of Duchenne muscular dystrophy that focuses on the use of site-specific recombinases to achieve genetic engineering. We employed non-viral, plasmid-mediated methods to reprogram mdx fibroblasts, using phiC31 integrase to insert a single copy of the reprogramming genes at a safe location in the genome. We next used Bxb1 integrase to add the therapeutic full-length dystrophin cDNA to the iPSC in a site-specific manner. Unwanted DNA sequences, including the reprogramming genes, were then precisely deleted with Cre resolvase. Pluripotency of the iPSC was analyzed before and after gene addition, and ability of the genetically corrected iPSC to differentiate into myogenic precursors was evaluated by morphology, immunohistochemistry, qRT-PCR, FACS analysis, and intramuscular engraftment. These data demonstrate a non-viral, reprogramming-plus-gene addition genetic engineering strategy utilizing site-specific recombinases that can be applied easily to mouse cells. This work introduces a significant level of precision in the genetic engineering of iPSC that can be built upon in future studies.

References

[1]  Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T, et al. (2007) Induction of Pluripotent Stem Cells from Adult Human Fibroblasts by Defined Factors. Cell 131: 861–872 doi:10.1016/j.cell.2007.11.019.
[2]  Takahashi K, Yamanaka S (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126: 663–676 doi:16/j.cell.2006.07.024.
[3]  Araki R, Uda M, Hoki Y, Sunayama M, Nakamura M, et al. (2013) Negligible immunogenicity of terminally differentiated cells derived from induced pluripotent or embryonic stem cells. Nature 494: 100–104 doi:10.1038/nature11807.
[4]  Yamanaka S (2009) A fresh look at iPS cells. Cell 137: 13–17 doi:10.1016/j.cell.2009.03.034.
[5]  Tedesco FS, Dellavalle A, Diaz-Manera J, Messina G, Cossu G (2010) Repairing skeletal muscle: regenerative potential of skeletal muscle stem cells. J Clin Invest 120: 11–19 doi:10.1172/JCI40373.
[6]  Bushby K (2009) Diagnosis and management of the limb girdle muscular dystrophies. Pract Neurol 9: 314–323 doi:10.1136/jnnp.2009.193938.
[7]  Koenig M, Monaco AP, Kunkel LM (1988) The complete sequence of dystrophin predicts a rod-shaped cytoskeletal protein. Cell 53: 219–228 doi:10.1016/0092-8674(88)90383-2.
[8]  Nowak KJ, Davies KE (2004) Duchenne muscular dystrophy and dystrophin: pathogenesis and opportunities for treatment. EMBO Rep 5: 872–876 doi:10.1038/sj.embor.7400221.
[9]  Pichavant C, Aartsma-Rus A, Clemens PR, Davies KE, Dickson G, et al. (2011) Current status of pharmaceutical and genetic therapeutic approaches to treat DMD. Mol Ther 19: 830–840 doi:10.1038/mt.2011.59.
[10]  Barberi T, Bradbury M, Dincer Z, Panagiotakos G, Socci ND, et al. (2007) Derivation of engraftable skeletal myoblasts from human embryonic stem cells. Nat Med 13: 642–648 doi:10.1038/nm1533.
[11]  Chang H, Yoshimoto M, Umeda K, Iwasa T, Mizuno Y, et al. (2009) Generation of transplantable, functional satellite-like cells from mouse embryonic stem cells. FASEB J 23: 1907–1919 doi:10.1096/fj.08-123661.
[12]  Darabi R, Gehlbach K, Bachoo RM, Kamath S, Osawa M, et al. (2008) Functional skeletal muscle regeneration from differentiating embryonic stem cells. Nat Med 14: 134–143 doi:10.1038/nm1705.
[13]  Darabi R, Pan W, Bosnakovski D, Baik J, Kyba M, et al. (2011) Functional myogenic engraftment from mouse iPS cells. Stem Cell Rev Reports 7: 948–957 doi:10.1007/s12015-011-9258-2.
[14]  Darabi R, Santos FNC, Filareto A, Pan W, Koene R, et al. (2011) Assessment of the myogenic stem cell compartment following transplantation of Pax3/Pax7-induced embryonic stem cell-derived progenitors. STEM CELLS 29: 777–790 doi:10.1002/stem.625.
[15]  Darabi R, Arpke RW, Irion S, Dimos JT, Grskovic M, et al. (2012) Human ES- and iPS-derived myogenic progenitors restore DYSTROPHIN and improve contractility upon transplantation in dystrophic mice. Cell Stem Cell 10: 610–619 doi:10.1016/j.stem.2012.02.015.
[16]  Filareto A, Parker S, Darabi R, Borges L, Iacovino M, et al. (2013) An ex vivo gene therapy approach to treat muscular dystrophy using inducible pluripotent stem cells. Nat Commun 4: 1549 doi:10.1038/ncomms2550.
[17]  Goudenege S, Lebel C, Huot NB, Dufour C, Fujii I, et al. (2012) Myoblasts derived from normal hESCs and dystrophic hiPSCs efficiently fuse with existing muscle fibers following transplantation. Mol Ther 20: 2153–2167 doi:10.1038/mt.2012.188.
[18]  Kazuki Y, Hiratsuka M, Takiguchi M, Osaki M, Kajitani N, et al. (2009) Complete genetic correction of iPS cells from Duchenne muscular dystrophy. Mol Ther 18: 386–393 doi:10.1038/mt.2009.274.
[19]  Mizuno Y, Chang H, Umeda K, Niwa A, Iwasa T, et al. (2010) Generation of skeletal muscle stem/progenitor cells from murine induced pluripotent stem cells. FASEB J 24: 2245–2253 doi:10.1096/fj.09-137174.
[20]  Tedesco FS, Gerli MFM, Perani L, Benedetti S, Ungaro F, et al. (2012) Transplantation of genetically corrected human iPSC-derived progenitors in mice with limb-girdle muscular dystrophy. Sci Transl Med 4: 140ra89–140ra89 doi:10.1126/scitranslmed.3003541.
[21]  Matsuda T, Cepko CL (2007) Controlled expression of transgenes introduced by in vivo electroporation. Proc Natl Acad Sci 104: 1027–1032 doi:10.1073/pnas.0610155104.
[22]  Keravala A, Chavez CL, Hu G, Woodard LE, Monahan PE, et al. (2011) Long-term phenotypic correction in factor IX knockout mice by using phiC31 integrase-mediated gene therapy. Gene Ther 18: 842–848 doi:10.1038/gt.2011.31.
[23]  Groth AC, Olivares EC, Thyagarajan B, Calos MP (2000) A phage integrase directs efficient site-specific integration in human cells. Proc Natl Acad Sci U S A 97: 5995–6000.
[24]  Nakagawa M, Takizawa N, Narita M, Ichisaka T, Yamanaka S (2010) Promotion of direct reprogramming by transformation-deficient Myc. Proc Natl Acad Sci 107: 14152–14157 doi:10.1073/pnas.1009374107.
[25]  Donello JE, Loeb JE, Hope TJ (1998) Woodchuck hepatitis virus contains a tripartite posttranscriptional regulatory element. J Virol 72: 5085–5092.
[26]  Chalberg TW, Portlock JL, Olivares EC, Thyagarajan B, Kirby PJ, et al. (2006) Integration specificity of phage phiC31 integrase in the human genome. J Mol Biol 357: 28–48 doi:10.1016/j.jmb.2005.11.098.
[27]  Thyagarajan B, Olivares EC, Hollis RP, Ginsburg DS, Calos MP (2001) Site-specific genomic integration in mammalian cells mediated by phage phiC31 integrase. Mol Cell Biol 21: 3926–3934 doi:10.1128/MCB.21.12.3926-3934.2001.
[28]  Keravala A, Groth A, Jarrahian S, Thyagarajan B, Hoyt J, et al. (2006) A diversity of serine phage integrases mediate site-specific recombination in mammalian cells. Mol Genet Genomics 276: 135–146 doi:10.1007/s00438-006-0129-5.
[29]  Nagy A (2000) Cre recombinase: The universal reagent for genome tailoring. genesis 26: 99–109 doi:;10.1002/(SICI)1526-968X(200002)26:2<99::?AID-GENE1>3.0.CO;2-B.
[30]  Sauer B, Henderson N (1989) Cre-stimulated recombination at loxP-containing DNA sequences placed into the mammalian genome. Nucleic Acids Res 17: 147–161 doi:10.1093/nar/17.1.147.
[31]  Papapetrou EP, Lee G, Malani N, Setty M, Riviere I, et al. (2011) Genomic safe harbors permit high β-globin transgene expression in thalassemia induced pluripotent stem cells. Nat Biotechnol 29: 73–78 doi:10.1038/nbt.1717.
[32]  Sommer CA, Sommer AG, Longmire TA, Christodoulou C, Thomas DD, et al. (2010) Excision of Reprogramming Transgenes Improves the Differentiation Potential of iPS Cells Generated with a Single Excisable Vector. STEM CELLS 28: 64–74 doi:10.1002/stem.255.
[33]  Banks GB, Combs AC, Chamberlain JS (2010) Sequencing protocols to genotype mdx, mdx4cv, and mdx5cv mice. Muscle Nerve 42: 268–270 doi:10.1002/mus.21700.
[34]  Fukada S, Higuchi S, Segawa M, Koda K, Yamamoto Y, et al. (2004) Purification and cell-surface marker characterization of quiescent satellite cells from murine skeletal muscle by a novel monoclonal antibody. Exp Cell Res 296: 245–255 doi:10.1016/j.yexcr.2004.02.018.
[35]  Cazzella V, Martone J, Pinnarò C, Santini T, Twayana SS, et al. (2012) Exon 45 skipping through U1-snRNA antisense molecules recovers the Dys-nNOS pathway and muscle differentiation in human DMD myoblasts. Mol Ther 20: 2134–2142 doi:10.1038/mt.2012.178.
[36]  Boldrin L, Neal A, Zammit PS, Muntoni F, Morgan JE (2012) Donor satellite cell engraftment is significantly augmented when the host niche is preserved and endogenous satellite cells are incapacitated. Stem Cells 30: 1971–1984 doi:10.1002/stem.1158.
[37]  Danko I, Chapman V, Wolff JA (1992) The frequency of revertants in mdx mouse genetic models for Duchenne muscular dystrophy. Pediatr Res 32: 128–131 doi:10.1203/00006450-199207000-00025.
[38]  Hacein-Bey-Abina S, Kalle CV, Schmidt M, McCormack MP, Wulffraat N, et al. (2003) LMO2-associated clonal T cell proliferation in two patients after gene therapy for SCID-X1. Science 302: 415–419 doi:10.1126/science.1088547.
[39]  Karow M, Chavez CL, Farruggio AP, Geisinger JM, Keravala A, et al. (2011) Site-specific recombinase strategy to create induced pluripotent stem cells efficiently with plasmid DNA. Stem Cells 29: 1696–1704 doi:10.1002/stem.730.
[40]  Ye L, Chang JC, Lin C, Qi Z, Yu J, et al. (2010) Generation of induced pluripotent stem cells using site-specific integration with phage integrase. Proc Natl Acad Sci 107: 19467–19472 doi:10.1073/pnas.1012677107.
[41]  Merkl C, Saalfrank A, Riesen N, Kühn R, Pertek A, et al. (2013) Efficient generation of rat induced pluripotent stem cells using a non-viral inducible vector. PLoS ONE 8: e55170 doi:10.1371/journal.pone.0055170.
[42]  Okita K, Matsumura Y, Sato Y, Okada A, Morizane A, et al. (2011) A more efficient method to generate integration-free human iPS cells. Nat Methods 8: 409–412 doi:10.1038/nmeth.1591.
[43]  Yu J, Hu K, Smuga-Otto K, Tian S, Stewart R, et al. (2009) Human induced pluripotent stem cells free of vector and transgene sequences. Science 324: 797–801 doi:10.1126/science.1172482.
[44]  Warren L, Manos PD, Ahfeldt T, Loh Y-H, Li H, et al. (2010) Highly efficient reprogramming to pluripotency and directed differentiation of human cells with synthetic modified mRNA. Cell Stem Cell 7: 618–630 doi:10.1016/j.stem.2010.08.012.
[45]  Rohwedel J, Maltsev V, Bober E, Arnold H-H, Hescheler J, et al. (1994) Muscle cell differentiation of embryonic stem cells reflects myogenesis in vivo: Developmentally regulated expression of myogenic determination genes and functional expression of ionic currents. Dev Biol 164: 87–101 doi:10.1006/dbio.1994.1182.
[46]  Rosenblatt JD, Lunt AI, Parry DJ, Partridge TA (1995) Culturing satellite cells from living single muscle fiber explants. Vitro Cell Dev Biol - Anim 31: 773–779 doi:10.1007/BF02634119.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133