Natural products (secondary metabolites) found in marine invertebrates are often thought to be produced by resident symbiotic bacteria, and these products appear to play a major role in the symbiotic interaction of bacteria and their hosts. In these animals, there is extensive variation, both in chemistry and in the symbiotic bacteria that produce them. Here, we sought to answer the question of what factors underlie chemical variation in the ocean. As a model, we investigated the colonial tunicate Lissoclinum patella because of its rich and varied chemistry and its broad geographic range. We sequenced mitochondrial cytochrome c oxidase 1 (COXI) genes, and found that animals classified as L. patella fall into three phylogenetic groups that may encompass several cryptic species. The presence of individual natural products followed the phylogenetic relationship of the host animals, even though the compounds are produced by symbiotic bacteria that do not follow host phylogeny. In sum, we show that cryptic populations of animals underlie the observed chemical diversity, suggesting that the host controls selection for particular secondary metabolite pathways. These results imply novel approaches to obtain chemical diversity from the oceans, and also demonstrate that the diversity of marine natural products may be greatly impacted by cryptic local extinctions.
References
[1]
Cragg GM, Grothaus PG, Newman DJ (2009) Impact of natural products on developing new anti-cancer agents. Chem Rev 109: 3012–3043. doi: 10.1021/cr900019j
[2]
Newman DJ, Cragg GM (2012) Natural products as sources of new drugs over the 30 years from 1981 to 2010. J Nat Prod 75: 311–335. doi: 10.1021/np200906s
Kott P (2001) The Australian Ascidiacea part 4, Aplousobranchia (3), Didemnidae. Mem Queensl Mus 47: 1–407.
[6]
Hirose E, Neilan BA, Schmidt EW, Murakami A, Gault PM, et al. (2009) Enigmatic life and evolution of Prochloron and related cyanobacteria inhabiting colonial ascidians. In: Gault P, Marler H, editors. Handbook on Cyanobacteria. New York: Nova Science. pp. 161–189.
[7]
Donia MS, Fricke WF, Partensky F, Cox J, Elshahawi SI, et al. (2011) Complex microbiome underlying secondary and primary metabolism in the tunicate-Prochloron symbiosis. Proc Natl Acad Sci USA 108: E1423–32. doi: 10.1073/pnas.1111712108
[8]
Schmidt EW, Nelson JT, Rasko DA, Sudek S, Eisen JA, et al. (2005) Patellamide A and C biosynthesis by a microcin-like pathway in Prochloron didemni, the cyanobacterial symbiont of Lisso-clinum patella. Proc Natl Acad Sci USA 102: 7315–7320. doi: 10.1073/pnas.0501424102
[9]
Arnison PG, Bibb MJ, Bierbaum G, Bowers AA, Bugni TS, et al. (2013) Ribosomally synthesized and post-translationally modified peptide natural products: Overview and recommendations for a universal nomenclature. Nat Prod Rep 30: 108–160. doi: 10.1039/c2np20085f
[10]
McIntosh JA, Robertson CR, Agarwal V, Nair SK, Bulaj GW, et al. (2010) Circular logic: Nonribosomal peptide-like macrocyclization with a ribosomal peptide catalyst. J Am Chem Soc 132: 15499–15501. doi: 10.1021/ja1067806
[11]
Tianero MDB, Donia MS, Young TS, Schultz PG, Schmidt EW (2012) Ribosomal route to smallmolecule diversity. J Am Chem Soc 134: 418–425. doi: 10.1021/ja208278k
[12]
Behrendt L, Larkum AWD, Trampe E, Norman A, S?rensen SJ, et al. (2012) Microbial diversity of biofilm communities in microniches associated with the didemnid ascidian Lissoclinum patella. ISME J 6: 1222–1237. doi: 10.1038/ismej.2011.181
[13]
Kwan JC, Donia MS, Han AW, Hirose E, Haygood MG, et al. (2012) Genome streamlining and chemical defense in a coral reef symbiosis. Proc Natl Acad Sci USA 109: 20655–20660. doi: 10.1073/pnas.1213820109
[14]
Kwan JC, Schmidt EW (2013) Bacterial endosymbiosis in a chordate host: Long-term co-evolution and conservation of secondary metabolism. PLOS ONE 8: e80822. doi: 10.1371/journal.pone.0080822
[15]
Donia MS, Fricke WF, Ravel J, Schmidt EW (2011) Variation in tropical reef symbiont metagenomes defined by secondary metabolism. PLOS ONE 6: e17897. doi: 10.1371/journal.pone.0017897
[16]
Kühl M, Behrendt L, Trampe E, Qvortrup K, Schreiber U, et al. (2012) Microenvironmental ecology of the chlorophyll b-containing symbiotic cyanobacterium Prochloron in the didemnid ascidian Lissoclinum patella. Front Microbiol 3: 402. doi: 10.3389/fmicb.2012.00402
[17]
Yokobori SI, Kurabayashi A, Neilan BA, Maruyama T, Hirose E (2006) Multiple origins of the ascidian-Prochloron symbiosis: Molecular phylogeny of photosymbiotic and non-symbiotic colonial ascidians inferred from 18S rDNA sequences. Mol Phylogenet Evol 40: 8–19. doi: 10.1016/j.ympev.2005.11.025
[18]
Hirose E (2000) Plant rake and algal pouch of the larvae in the tropical ascidian Diplosoma similis: An adaptation for vertical transmission of photosynthetic symbionts Prochloron sp. Zool Sci 17: 233–240. doi: 10.2108/zsj.17.233
[19]
Bock DG, MacIsaac HJ, Cristescu ME (2012) Multilocus genetic analyses differentiate between widespread and spatially restricted cryptic species in a model ascidian. Proc Royal Soc B 279: 2377–2385. doi: 10.1098/rspb.2011.2610
[20]
Tarjuelo I, Posada D, Crandall KA, Pascual M, Turon X (2004) Phylogeography and speciation of colour morphs in the colonial ascidian Pseudodistoma crucigaster. Mol Ecol 13: 3125–3136. doi: 10.1111/j.1365-294x.2004.02306.x
[21]
Tarjuelo I, Posada D, Crandall KA, Pascual M, Turon X (2001) Cryptic species of Clavelina (Ascidiacea) in two di_erent habitats: Harbours and rocky littoral zones in the northwestern Mediterranean. Mar Biol 139: 455–462. doi: 10.1007/s002270100587
[22]
Pérez-Portela R, Turon X (2008) Cryptic divergence and strong population structure in the colonial invertebrate Pycnoclavella communis (Ascidiacea) inferred from molecular data. Zoology 111: 163–178. doi: 10.1016/j.zool.2007.06.006
[23]
Caputi L, Andreakis N, Mastrototaro F, Cirino P, Vassillo M, et al. (2007) Cryptic speciation in a model invertebrate chordate. Proc Natl Acad Sci USA 104: 9364–9369. doi: 10.1073/pnas.0610158104
[24]
Hebert PDN, Ratnasingham S, deWaard JR (2003) Barcoding animal life: Cytochrome c oxidase subunit 1 divergences among closely related species. Proc Royal Soc B 270: S96–S99. doi: 10.1098/rsbl.2003.0025
[25]
W?rheide G, Hooper JNA, Degnan BM (2002) Phylogeography of western Pacific Leucetta ‘chagosensis’ (Porifera: Calcarea) from ribosomal DNA sequences: Implications for population history and conservation of the Great Barrier Reef World Heritage Area (Australia). Mol Ecol 11: 1753–1768. doi: 10.1046/j.1365-294x.2002.01570.x
[26]
W?rheide G, Epp LS, Macis L (2008) Deep genetic divergences among Indo-Pacific populations of the coral reef sponge Leucetta chagosensis (Leucettidae): Founder effects, vicariance, or both? BMC Evol Biol 8: 24. doi: 10.1186/1471-2148-8-24
[27]
Hirose M, Nozawa Y, Hirose E (2010) Genetic isolation among morphotypes in the photosymbiotic didemnid Didemnum molle (Ascidiacea, Tunicata) from the Ryukyus and Taiwan. Zool Sci 27: 959–964. doi: 10.2108/zsj.27.959
[28]
Smith KF, Stefaniak L, Saito Y, Gemmill CEC, Cary SC, et al. (2012) Increased inter-colony fusion rates are associated with reduced COI haplotype diversity in an invasive colonial ascidian Didemnum vexillum. PLOS ONE 7: e30473. doi: 10.1371/journal.pone.0030473
[29]
Angiuoli SV, Matalka M, Gussman A, Galens K, Vangala M, et al. (2011) CloVR: A virtual machine for automated and portable sequence analysis from the desktop using cloud computing. BMC Bioinf 12: 356. doi: 10.1186/1471-2105-12-356
[30]
White JR, Arze C, Matalka M, Angiuoli SR, Fricke FW (2011) CloVR-16S: Phylogenetic microbial community composition analysis based on 16S ribosomal RNA amplicon sequencing – standard operating procedure, version 1.0. Nat Prec 10.1038/npre.2011.5888.3.
[31]
Houssen WE, Jaspars M (2010) Azole-based cyclic peptides from the sea squirt Lissoclinum patella: Old scaffolds, new avenues. ChemBioChem 11: 1803–1815. doi: 10.1002/cbic.201000230
[32]
Corley DG, Moore RE, Paul VJ (1988) Patellazole B: A novel cytotoxic thiazole-containing macrolide from the marine tunicate Lissoclinum patella. J Am Chem Soc 110: 7920–7922. doi: 10.1021/ja00231a078
[33]
Carroll AR, Coll JC, Bourne DJ, MacLeod JK, Zabriskie TM, et al. (1996) Patellins 1–6 and trunkamide A: Novel cyclic hexa-, hepta-and octa-peptides from colonial ascidians, Lissoclinum sp. Aust J Chem 49: 659–667. doi: 10.1002/chin.199649218
[34]
Rashid MA, Gustafson KR, Cardellina JH, Boyd MR (1995) Patellamide F, a new cytotoxic cyclic peptide from the colonial ascidian Lissoclinum patella. J Nat Prod 58: 594–597. doi: 10.1021/np50118a020
[35]
Andersson SGE, Zomorodipour A, Andersson JO, Sicheritz-Pontén T, Alsmark UCM, et al. (1998) The genome sequence of Rickettsia prowazekii and the origin of mitochondria. Nature 396: 133–140. doi: 10.1038/24094
[36]
McCutcheon JP, Moran NA (2012) Extreme genome reduction in symbiotic bacteria. Nat Rev Microbiol 10: 13–26. doi: 10.1038/nrmicro2670
[37]
Gissi C, Pesole G, Mastrototaro F, Iannelli F, Guida V, et al. (2010) Hypervariability of ascidian mitochondrial gene order: Exposing the myth of deuterostome organelle genome stability. Mol Biol Evol 27: 211–215. doi: 10.1093/molbev/msp234
[38]
Singh TR, Tsagkogeorga G, Delsuc F, Blanquart S, Shenkar N, et al. (2009) Tunicate mitogenomics and phylogenetics: Peculiarities of the Herdmania momus mitochondrial genome and support for the new chordate phylogeny. BMC Genom 10: 534. doi: 10.1186/1471-2164-10-534
[39]
Gissi C, Iannelli F, Pesole G (2004) Complete mtDNA of Ciona intestinalis reveals extensive gene rearrangement and the presence of an atp8 and an extra trnM gene in ascidians. J Mol Evol 58: 376–389. doi: 10.1007/s00239-003-2559-6
[40]
Iannelli F, Pesole G, Sordino P, Gissi C (2007) Mitogenomics reveals two cryptic species in Ciona intestinalis. Trends Genet 23: 419–422. doi: 10.1016/j.tig.2007.07.001
[41]
Yokobori SI, Watanabe Y, Oshima T (2003) Mitochondrial genome of Ciona savignyi (Urochordata, Ascidiacea, Enterogona): Comparison of gene arrangement and tRNA genes with Halocynthia roretzi mitochondrial genome. J Mol Evol 57: 574–587. doi: 10.1007/s00239-003-2511-9
[42]
Yokobori SI, Oshima T, Wada H (2005) Complete nucleotide sequence of the mitochondrial genome of Doliolum nationalis with implications for evolution of urochordates. Mol Phylogenet Evol 34: 273–283. doi: 10.1016/j.ympev.2004.10.002
[43]
Stach T, Braband A, Podsiadlowski L (2010) Erosion of phylogenetic signal in tunicate mitochondrial genomes on different levels of analysis. Mol Phylogenet Evol 55: 860–870. doi: 10.1016/j.ympev.2010.03.011
[44]
Iannelli F, Griggio F, Pesole G, Gissi C (2007) The mitochondrial genome of Phallusia mammillata and Phallusia fumigata (Tunicata, Ascidiacea): High genome plasticity at intra-genus level. BMC Evol Biol 7: 155. doi: 10.1186/1471-2148-7-155
[45]
Yokobori SI, Ueda T, Feldmaier-Fuchs G, P??bo S, Ueshima R, et al. (1999) Complete DNA sequence of the mitochondrial genome of the ascidian Halocynthia roretzi (Chordata, Urochordata). Genetics 153: 1851–1862.
[46]
Engene N, Rottacker EC, Kastovsky J, Byrum T, Choi H, et al. (2012) Moorea producens gen. nov., sp. nov. and Moorea bouillonii comb. nov., tropical marine cyanobacteria rich in bioactive secondary metabolites. Int J Syst Evol Microbiol 62: 1171–1178. doi: 10.1099/ijs.0.033761-0
[47]
Jones AC, Monroe EA, Podell S, Hess WR, Klages S, et al. (2011) Genomic insights into the physiology and ecology of the marine filamentous cyanobacterium Lyngbya majuscula. Proc Natl Acad Sci USA 108: 8815–8820. doi: 10.1073/pnas.1101137108
[48]
Moran NA, McCutcheon JP, Nakabachi A (2008) Genomics and evolution of heritable bacterial symbionts. Ann Rev Genet 42: 165–190. doi: 10.1146/annurev.genet.41.110306.130119
[49]
Donia MS, Hathaway BJ, Sudek S, Haygood MG, Rosovitz MJ, et al. (2006) Natural combinatorial peptide libraries in cyanobacterial symbionts of marine ascidians. Nat Chem Biol 2: 729–735. doi: 10.1038/nchembio829
[50]
Donia MS, Ruffner DE, Cao S, Schmidt EW (2011) Accessing the hidden majority of marine natural products through metagenomics. ChemBioChem 12: 1230–1236. doi: 10.1002/cbic.201000780
[51]
Schmidt EW, Donia MS (2009) Chapter 23. Cyanobactin ribosomally synthesized peptides - a case of deep metagenome mining. Methods Enzymol 458: 575–596. doi: 10.1016/s0076-6879(09)04823-x
[52]
Sievers F, Wilm A, Dineen D, Gibson TJ, Karplus K, et al. (2011) Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. Mol Syst Biol 7: 539. doi: 10.1038/msb.2011.75
[53]
Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, et al. (2007) Clustal W and Clustal X version 2.0. Bioinf 23: 2947–2948. doi: 10.1093/bioinformatics/btm404
[54]
Price MN, Dehal PS, Arkin AP (2010) FastTree 2 – Approximately maximum-likelihood trees for large alignments. PLOS ONE 5: e9490. doi: 10.1371/journal.pone.0009490
[55]
Letunic I, Bork P (2011) Interactive Tree Of Life v2: Online annotation and display of phylogenetic trees made easy. Nucl Acids Res 39: W475–W478. doi: 10.1093/nar/gkr201
[56]
Hou Y, Braun DR, Michel CR, Klassen JL, Adnani N, et al. (2012) Microbial strain prioritization using metabolomics tools for the discovery of natural products. Anal Chem 84: 4277–4283. doi: 10.1021/ac202623g
[57]
Pluskal T, Castillo S, Villar-Briones A, Ore?i? M (2010) MZmine 2: Modular framework for processing, visualizing, and analyzing mass spectrometry-based molecular profile data. BMC Bioinf 11: 395. doi: 10.1186/1471-2105-11-395
[58]
Magofic T, Salzberg SL (2011) FLASH: Fast length adjustment of short reads to improve genome assemblies. Bioinf 27: 2957–2963. doi: 10.1093/bioinformatics/btr507
[59]
Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M, et al. (2012) SPAdes: A new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol 19: 455–477. doi: 10.1089/cmb.2012.0021
Krzywinski M, Birol I, Jones SJM, Marra MA (2012) Hive plots–rational approach to visualizing networks. Brief Bioinf 13: 627–644. doi: 10.1093/bib/bbr069