Growing genetic and epidemiological evidence suggests a direct connection between the disruption of circadian rhythm and breast cancer. Moreover, the expression of several molecular components constituting the circadian clock machinery has been found to be modulated by estrogen-estrogen receptor α (E2-ERα) signaling in ERα-positive breast cancer cells. In this study, we investigated the regulation of CLOCK expression by ERα and its roles in cell proliferation. Immunohistochemical analysis of human breast tumor samples revealed high expression of CLOCK in ERα-positive breast tumor samples. Subsequent experiments using ERα-positive human breast cancer cell lines showed that both protein and mRNA levels of CLOCK were up-regulated by E2 and ERα. In these cells, E2 promoted the binding of ERα to the EREs (estrogen-response elements) of CLOCK promoter, thereby up-regulating the transcription of CLOCK. Knockdown of CLOCK attenuated cell proliferation in ERα-positive breast cancer cells. Taken together, these results demonstrated that CLOCK could be an important gene that mediates cell proliferation in breast cancer cells.
References
[1]
Miyoshi Y, Murase K, Saito M, Imamura M, Oh K (2010) Mechanisms of estrogen receptor-alpha upregulation in breast cancers. Med Mol Morphol 43: 193–196. doi: 10.1007/s00795-010-0514-3
[2]
Wu H, Chen Y, Liang J, Shi B, Wu G, et al. (2005) Hypomethylation-linked activation of PAX2 mediates tamoxifen-stimulated endometrial carcinogenesis. Nature 438: 981–987. doi: 10.1038/nature04225
[3]
Sanchez AM, Flamini MI, Baldacci C, Goglia L, Genazzani AR, et al. (2010) Estrogen receptor-alpha promotes breast cancer cell motility and invasion via focal adhesion kinase and N-WASP. Mol Endocrinol 24: 2114–2125. doi: 10.1210/me.2010-0252
[4]
Tyson JJ, Baumann WT, Chen C, Verdugo A, Tavassoly I, et al. (2011) Dynamic modelling of oestrogen signalling and cell fate in breast cancer cells. Nat Rev Cancer 11: 523–532. doi: 10.1038/nrc3081
[5]
Berger CE, Qian Y, Liu G, Chen H, Chen X (2012) p53, a target of estrogen receptor (ER) alpha, modulates DNA damage-induced growth suppression in ER-positive breast cancer cells. J Biol Chem 287: 30117–30127. doi: 10.1074/jbc.m112.367326
[6]
Le TP, Sun M, Luo X, Kraus WL, Greene GL (2013) Mapping ERbeta genomic binding sites reveals unique genomic features and identifies EBF1 as an ERbeta interactor. PLOS One 8: e71355. doi: 10.1371/journal.pone.0071355
Joshi SR, Ghattamaneni RB, Scovell WM (2011) Expanding the paradigm for estrogen receptor binding and transcriptional activation. Mol Endocrinol 25: 980–994. doi: 10.1210/me.2010-0302
[9]
Platet N, Cathiard AM, Gleizes M, Garcia M (2004) Estrogens and their receptors in breast cancer progression: a dual role in cancer proliferation and invasion. Crit Rev Oncol Hematol 51: 55–67. doi: 10.1016/j.critrevonc.2004.02.001
[10]
Crumbley C, Wang Y, Kojetin DJ, Burris TP (2010) Characterization of the core mammalian clock component, NPAS2, as a REV-ERBalpha/RORalpha target gene. J Biol Chem 285: 35386–35392. doi: 10.1074/jbc.m110.129288
[11]
Shearman LP, Sriram S, Weaver DR, Maywood ES, Chaves I, et al. (2000) Interacting molecular loops in the mammalian circadian clock. Science 288: 1013–1019. doi: 10.1126/science.288.5468.1013
[12]
Schibler U, Sassone-Corsi P (2002) A web of circadian pacemakers. Cell 111: 919–922. doi: 10.1016/s0092-8674(02)01225-4
[13]
Panda S, Antoch MP, Miller BH, Su AI, Schook AB, et al. (2002) Coordinated transcription of key pathways in the mouse by the circadian clock. Cell 109: 307–320. doi: 10.1016/s0092-8674(02)00722-5
[14]
Miller BH, McDearmon EL, Panda S, Hayes KR, Zhang J, et al. (2007) Circadian and CLOCK-controlled regulation of the mouse transcriptome and cell proliferation. Proc Natl Acad Sci U S A 104: 3342–3347. doi: 10.1073/pnas.0611724104
[15]
Nakamura TJ, Moriya T, Inoue S, Shimazoe T, Watanabe S, et al. (2005) Estrogen differentially regulates expression of Per1 and Per2 genes between central and peripheral clocks and between reproductive and nonreproductive tissues in female rats. J Neurosci Res 82: 622–630. doi: 10.1002/jnr.20677
[16]
Rossetti S, Esposito J, Corlazzoli F, Gregorski A, Sacchi N (2012) Entrainment of breast (cancer) epithelial cells detects distinct circadian oscillation patterns for clock and hormone receptor genes. Cell Cycle 11: 350–360. doi: 10.4161/cc.11.2.18792
[17]
Lu M, Mira-y-Lopez R, Nakajo S, Nakaya K, Jing Y (2005) Expression of estrogen receptor alpha, retinoic acid receptor alpha and cellular retinoic acid binding protein II genes is coordinately regulated in human breast cancer cells. Oncogene 24: 4362–4369. doi: 10.1038/sj.onc.1208661
[18]
Perrin JS, Segall LA, Harbour VL, Woodside B, Amir S (2006) The expression of the clock protein PER2 in the limbic forebrain is modulated by the estrous cycle. Proc Natl Acad Sci U S A 103: 5591–5596. doi: 10.1073/pnas.0601310103
[19]
Funabashi T, Shinohara K, Mitsushima D, Kimura F (2000) Gonadotropin-releasing hormone exhibits circadian rhythm in phase with arginine-vasopressin in co-cultures of the female rat preoptic area and suprachiasmatic nucleus. J Neuroendocrinol 12: 521–528. doi: 10.1046/j.1365-2826.2000.00481.x
[20]
Duguay D, Cermakian N (2009) The crosstalk between physiology and circadian clock proteins. Chronobiol Int 26: 1479–1513. doi: 10.3109/07420520903497575
[21]
Chen ST, Choo KB, Hou MF, Yeh KT, Kuo SJ, et al. (2005) Deregulated expression of the PER1, PER2 and PER3 genes in breast cancers. Carcinogenesis 26: 1241–1246. doi: 10.1093/carcin/bgi075
[22]
Sahar S, Sassone-Corsi P (2007) Circadian clock and breast cancer: a molecular link. Cell Cycle 6: 1329–1331. doi: 10.4161/cc.6.11.4295
[23]
Stevens RG (2005) Circadian disruption and breast cancer: from melatonin to clock genes. Epidemiology 16: 254–258. doi: 10.1097/01.ede.0000152525.21924.54
[24]
Nakamura TJ, Sellix MT, Menaker M, Block GD (2008) Estrogen directly modulates circadian rhythms of PER2 expression in the uterus. Am J Physiol Endocrinol Metab 295: E1025–1031. doi: 10.1152/ajpendo.90392.2008
[25]
Gery S, Virk RK, Chumakov K, Yu A, Koeffler HP (2007) The clock gene Per2 links the circadian system to the estrogen receptor. Oncogene 26: 7916–7920. doi: 10.1038/sj.onc.1210585
[26]
He PJ, Hirata M, Yamauchi N, Hattori MA (2007) Up-regulation of Per1 expression by estradiol and progesterone in the rat uterus. J Endocrinol 194: 511–519. doi: 10.1677/joe-07-0172
[27]
Li S, Wang M, Ao X, Chang AK, Yang C, et al. (2013) CLOCK is a substrate of SUMO and sumoylation of CLOCK upregulates the transcriptional activity of estrogen receptor-alpha. Oncogene 32: 4883–4891. doi: 10.1038/onc.2012.518
[28]
Hong Y, Xing X, Li S, Bi H, Yang C, et al. (2011) SUMOylation of DEC1 protein regulates its transcriptional activity and enhances its stability. PLoS One 6: e23046. doi: 10.1371/journal.pone.0023046
[29]
Yin L, Wang J, Klein PS, Lazar MA (2006) Nuclear receptor Rev-erbalpha is a critical lithium-sensitive component of the circadian clock. Science 311: 1002–1005. doi: 10.1126/science.1121613
[30]
Crumbley C, Burris TP (2011) Direct regulation of CLOCK expression by REV-ERB. PLOS One 6: e17290. doi: 10.1371/journal.pone.0017290
[31]
Yang C, Li S, Wang M, Chang AK, Liu Y, et al. (2013) PTEN suppresses the oncogenic function of AIB1 through decreasing its protein stability via mechanism involving Fbw7 alpha. Mol Cancer 12: doi:10.1186/1476-4598-1112-1121.
[32]
Chen Y, Shi L, Zhang L, Li R, Liang J, et al. (2008) The molecular mechanism governing the oncogenic potential of SOX2 in breast cancer. J Biol Chem 283: 17969–17978. doi: 10.1074/jbc.m802917200
[33]
Xing X, Bi H, Chang AK, Zang MX, Wang M, et al. (2012) SUMOylation of AhR modulates its activity and stability through inhibiting its ubiquitination. J Cell Physiol 227: 3812–3819. doi: 10.1002/jcp.24092
[34]
Li S, Yang C, Hong Y, Bi H, Zhao F, et al. (2012) The transcriptional activity of co-activator AIB1 is regulated by the SUMO E3 ligase PIAS1. Biol Cell 104: 287–296. doi: 10.1111/boc.201100116
[35]
Wang M, Zhao F, Li S, Chang AK, Jia Z, et al. (2013) AIB1 Cooperates with ERalpha to Promote Epithelial Mesenchymal Transition in Breast Cancer through SNAI1 Activation. PLOS One 8: e65556. doi: 10.1371/journal.pone.0065556
[36]
Wang M, Bao YL, Wu Y, Yu CL, Meng X, et al. (2008) Identification and characterization of the human testes-specific protease 50 gene promoter. DNA Cell Biol 27: 307–314. doi: 10.1089/dna.2007.0692
[37]
Whelan JA, Russell NB, Whelan MA (2003) A method for the absolute quantification of cDNA using real-time PCR. J Immunol Methods 278: 261–269. doi: 10.1016/s0022-1759(03)00223-0
[38]
Shi L, Sun L, Li Q, Liang J, Yu W, et al. (2011) Histone demethylase JMJD2B coordinates H3K4/H3K9 methylation and promotes hormonally responsive breast carcinogenesis. Proceedings of the National Academy of Sciences 108: 7541–7546. doi: 10.1073/pnas.1017374108
[39]
Zhang Y, Liang J, Li Y, Xuan C, Wang F, et al. (2010) CCCTC-binding Factor Acts Upstream of FOXA1 and Demarcates the Genomic Response to Estrogen. Journal of Biological Chemistry 285: 28604–28613. doi: 10.1074/jbc.m110.149658
[40]
Barber RD, Harmer DW, Coleman RA, Clark BJ (2005) GAPDH as a housekeeping gene: analysis of GAPDH mRNA expression in a panel of 72 human tissues. Physiol Genomics 21: 389–395. doi: 10.1152/physiolgenomics.00025.2005
[41]
Shi B, Liang J, Yang X, Wang Y, Zhao Y, et al. (2007) Integration of estrogen and Wnt signaling circuits by the polycomb group protein EZH2 in breast cancer cells. Mol Cell Biol 27: 5105–5119. doi: 10.1128/mcb.00162-07
[42]
Kuske B, Naughton C, Moore K, Macleod KG, Miller WR, et al. (2006) Endocrine therapy resistance can be associated with high estrogen receptor alpha (ERalpha) expression and reduced ERalpha phosphorylation in breast cancer models. Endocr Relat Cancer 13: 1121–1133. doi: 10.1677/erc.1.01257
[43]
Yu EJ, Kim SH, Kim MJ, Seo WY, Song KA, et al. (2013) SUMOylation of ZFP282 potentiates its positive effect on estrogen signaling in breast tumorigenesis. Oncogene 32: 4160–4168. doi: 10.1038/onc.2012.420
[44]
Kakuguchi W, Kitamura T, Kuroshima T, Ishikawa M, Kitagawa Y, et al. (2010) HuR knockdown changes the oncogenic potential of oral cancer cells. Mol Cancer Res 8: 520–528. doi: 10.1158/1541-7786.mcr-09-0367
[45]
Akagi T, Sasai K, Hanafusa H (2003) Refractory nature of normal human diploid fibroblasts with respect to oncogene-mediated transformation. Proc Natl Acad Sci U S A 100: 13567–13572. doi: 10.1073/pnas.1834876100
[46]
Li YY, Bao YL, Song ZB, Sun LG, Wu P, et al. (2012) The threonine protease activity of testes-specific protease 50 (TSP50) is essential for its function in cell proliferation. PLOS One 7: e35030. doi: 10.1371/journal.pone.0035030
[47]
Lee JY, Kim HJ, Yoon NA, Lee WH, Min YJ, et al. (2013) Tumor suppressor p53 plays a key role in induction of both tristetraprolin and let-7 in human cancer cells. Nucleic Acids Res 41: 5614–5625. doi: 10.1093/nar/gkt222
[48]
White RE, McTigue DM, Jakeman LB (2010) Regional heterogeneity in astrocyte responses following contusive spinal cord injury in mice. J Comp Neurol 518: 1370–1390. doi: 10.1002/cne.22282
[49]
Berchuck A, Soisson AP, Clarke-Pearson DL, Sopor JT, Boyer CM, et al. (1989) Immunohistochemical Expression of CA 125 in Endometrial Adenocarcinoma: Correlation of Antigen Expression with Metastatic Potential. Cancer Res 49: 2091–2095.
[50]
Zhou F, Drabsch Y, Dekker TJ, de Vinuesa AG, Li Y, et al. (2014) Nuclear receptor NR4A1 promotes breast cancer invasion and metastasis by activating TGF-beta signalling. Nat Commun 5: doi:10.1038/ncomms4388.
[51]
Garofalo C, Sisci D, Surmacz E (2004) Leptin interferes with the effects of the antiestrogen ICI 182,780 in MCF-7 breast cancer cells. Clin Cancer Res 10: 6466–6475. doi: 10.1158/1078-0432.ccr-04-0203
[52]
McDonnell DP (2004) The molecular determinants of estrogen receptor pharmacology. Maturitas 48 Suppl 1S7–12. doi: 10.1016/j.maturitas.2004.03.006
[53]
McDonnell DP (2005) The molecular pharmacology of estrogen receptor modulators: implications for the treatment of breast cancer. Clin Cancer Res 11: 871s–877s.
[54]
Hansen J (2001) Increased breast cancer risk among women who work predominantly at night. Epidemiology 12: 74–77. doi: 10.1097/00001648-200101000-00013
[55]
Schernhammer ES, Laden F, Speizer FE, Willett WC, Hunter DJ, et al. (2001) Rotating night shifts and risk of breast cancer in women participating in the nurses' health study. J Natl Cancer Inst 93: 1563–1568. doi: 10.1093/jnci/93.20.1563
[56]
Hansen J (2006) Risk of breast cancer after night- and shift work: current evidence and ongoing studies in Denmark. Cancer Causes Control 17: 531–537. doi: 10.1007/s10552-005-9006-5
[57]
Viswanathan AN, Hankinson SE, Schernhammer ES (2007) Night shift work and the risk of endometrial cancer. Cancer Res 67: 10618–10622. doi: 10.1158/0008-5472.can-07-2485
[58]
Dauvois S, Danielian PS, White R, Parker MG (1992) Antiestrogen ICI 164,384 reduces cellular estrogen receptor content by increasing its turnover. Proc Natl Acad Sci U S A 89: 4037–4041. doi: 10.1073/pnas.89.9.4037
[59]
Wu H, Sun L, Zhang Y, Chen Y, Shi B, et al. (2006) Coordinated regulation of AIB1 transcriptional activity by sumoylation and phosphorylation. J Biol Chem 281: 21848–21856. doi: 10.1074/jbc.m603772200
[60]
Wijayaratne AL, McDonnell DP (2001) The human estrogen receptor-alpha is a ubiquitinated protein whose stability is affected differentially by agonists, antagonists, and selective estrogen receptor modulators. J Biol Chem 276: 35684–35692. doi: 10.1074/jbc.m101097200
[61]
Marsaud V, Gougelet A, Maillard S, Renoir JM (2003) Various phosphorylation pathways, depending on agonist and antagonist binding to endogenous estrogen receptor alpha (ERalpha), differentially affect ERalpha extractability, proteasome-mediated stability, and transcriptional activity in human breast cancer cells. Mol Endocrinol 17: 2013–2027. doi: 10.1210/me.2002-0269
[62]
Fujita N, Kajita M, Taysavang P, Wade PA (2004) Hormonal regulation of metastasis-associated protein 3 transcription in breast cancer cells. Mol Endocrinol 18: 2937–2949. doi: 10.1210/me.2004-0258
[63]
Rossetti S, Corlazzoli F, Gregorski A, Azmi NH, Sacchi N (2012) Identification of an estrogen-regulated circadian mechanism necessary for breast acinar morphogenesis. Cell Cycle 11: 3691–3700. doi: 10.4161/cc.21946