[1] | Aragno M, Schlegel HG (1992) The prokaryotes. The mesophilic hydrogen-oxidizing (Knallgas) bacteria. Springer, New York. pp. 344–384.
|
[2] | Bowien B, Schlegel HG (1981) Physiology and biochemistry of aerobic hydrogen-oxidizing bacteria. Annu Rev Microbiol 35: 405–452. doi: 10.1146/annurev.mi.35.100181.002201
|
[3] | Kersters K, De Ley J (1984) Genus Alcaligenes Castellani and Chalmers 1919. In: Krieg NR, Holt JG (ed) Bergey's manual of systematic bacteriology, vol. 1 . The Williams and Wilkins Co., Baltimore, MD. pp.361–373.
|
[4] | Cramm R (2009) Genomic view of energy metabolism in Ralstonia eutropha H16. J Mol Microbiol Biotechnol 16: 38–52. doi: 10.1159/000142893
|
[5] | Reinecke F, Steinbüchel A (2009) Ralstonia eutropha strain H16 as model organism for PHA metabolism and for biotechnological production of technically interesting biopolymers. J Mol Microbiol Biotechnol 16: 91–108. doi: 10.1159/000142897
|
[6] | Hocking PJ, Marchessault RH (1994) Biopolyesters. In: G. J. L. Griffin (ed.), Chemistry and technology of biodegradable polymers. Chapman and Hall, London, United Kingdom. pp. 48–96.
|
[7] | Lemoigne M (1926) Produits de deshydration et de polymerisation de lacide β-oxybutyrique. Bull Soc Chim Bio (Paris) 8: 770–782.
|
[8] | Anderson AJ, Dawes EA (1990) Occurrence, metabolism, metabolic role, and industrial uses of bacterial polyhydroxyalkanoates. Microbiol Rev 54: 450–472.
|
[9] | Steinbüchel A, Füchtenbusch B (1998) Bacterial and other biological systems for polyester production. Trends Biotechnol 16: 419–427. doi: 10.1016/s0167-7799(98)01194-9
|
[10] | Aragno M, Walther-Mauruschat A, Mayer F, Schlegel HG (1977) Micromorphology of Gram-negative hydrogen bacteria. I. Cell morphology and flagellation. Arch Microbiol 114: 93–100. doi: 10.1007/bf00410769
|
[11] | Steinbüchel A, Valentin HE (1995) Diversity of microbial polyhydroxyalkanoic acids. FEMS Microbiol Lett 128: 219–228. doi: 10.1111/j.1574-6968.1995.tb07528.x
|
[12] | Doi Y, Segawa A, Nakamura S, Kunioka MT (1990) Production of biodegradable copolyesters by Alcaligenes eutrophus. In: E. A. Dawes (ed.) New biosynthetic biodegradable polymers of industrial interest from microorganisms. Kluyver, Dordrecht, The Netherlands. pp. 37–48.
|
[13] | Kunioka M, Nakamura Y, Doi Y (1988) New bacterial copolyesters produced in Alcaligenes eutrophus from organic acids. Polym Commun 29: 174–176.
|
[14] | Haywood GW, Anderson AJ, Dawes AE (1988) Characterization of two 3-ketothiolases possessing differing substrate specificities in the polyhydroxyalcanoate synthesizing organism Alcaligenes eutrophus. FEMS Microbiol Lett 52: 259–264. doi: 10.1111/j.1574-6968.1988.tb02577.x
|
[15] | Haywood GW, Anderson AJ, Chu L, Dawes AE (1988) The role of NADH-and NADPH-linked acetoacetyl-CoA reductases in the poly-3-hydroxybutyrate synthesizing organism Alcaligenes eutrophus. FEMS Microbiol Lett 52: 259–264. doi: 10.1111/j.1574-6968.1988.tb02607.x
|
[16] | Haywood GW, Anderson AJ, Dawes AE (1989) The importance of PHB synthase substrate specificity in polyhydroxyalkanoate synthesis by Alcaligenes eutrophus. FEMS Microbiol Lett 57: 1–6. doi: 10.1111/j.1574-6968.1989.tb03210.x
|
[17] | Oeding V, Schlegel HG (1973) β-Ketothiolase from Hydrogenomonas eutrophus H16 and its significance in the regulation of poly-β-hydroxybutyrate metabolism. Biochem J 134: 239–248.
|
[18] | Peoples OP, Sinskey AJ (1989a) Poly-β-hydroxybutyrate biosynthesis in Alcaligenes eutrophus H16. Characterization of the genes encoding β-ketothiolase and acetoacetyl-CoA reductase. J Biol Chem 264: 15293–15297.
|
[19] | Peoples OP, Sinskey AJ (1989b) Poly-β-hydroxybutyrate biosynthesis in Alcaligenes eutrophus H16. Identification and characterization of the PHB polymerase gene (phbC). J Biol Chem 264: 15298–15303.
|
[20] | Schubert P, Steinbüchel A, Schlegel HG (1988) Cloning of the Alcaligenes eutrophus genes for synthesis of poly-β-hydroxybutyric acid (PHB) and synthesis of PHB in Escherichia coli. J Bacteriol 170: 5837–5847.
|
[21] | Slater T, Houmiel KL, Tran M, Mitsky TA, Taylor NB, et al. (1998) Multiple β-ketothiolases mediate poly(β-hydroxyalkanoate) copolymer synthesis in Ralstonia eutropha. J Bacteriol 180: 1979–1987.
|
[22] | Lindenkamp N, Peplinski K, Volodina E, Ehrenreich A, Steinbüchel A (2010) Multiple β-ketothiolase deletion mutants of Ralstonia eutropha: impact on the composition of 3-mercaptopropionic acid containing copolymer. Appl Environ Microbiol 97: 7699–7709. doi: 10.1128/aem.01058-10
|
[23] | Pohlmann A, Fricke WF, Reinecke F, Kusian B, Liesegang H, et al. (2006) Hydrogen-based biotechnology: genome sequence of the bioplastic-producing ?Knallgas“ bacterium Ralstonia eutropha H16. Nature Biotechnol 24: 1257–1262. doi: 10.1038/nbt1244
|
[24] | Peplinski K, Ehrenreich A, D?ring C, B?meke M, Reinecke F, et al. (2010) Genome-wide transcriptome analyses of the ?Knallgas“ bacterium Ralstonia eutropha H16 with regard to polyhydroxyalkanoate metabolism. Microbiology (SGM) 156: 2136–2152. doi: 10.1099/mic.0.038380-0
|
[25] | Steinbüchel A, Schlegel HG (1991) Physiology and molecular genetics of poly(β-hydroxyalkanoic acid) synthesis in Alcaligenes eutrophus. Mol Microbiol 5: 535–542. doi: 10.1111/j.1365-2958.1991.tb00725.x
|
[26] | Rehm BHA, Steinbüchel A (1999) Biochemical and genetic analysis of PHA synthases and other proteins required for PHA synthesis. Int J Biol Macromol 25: 3–19. doi: 10.1016/s0141-8130(99)00010-0
|
[27] | Rehm BHA, Steinbüchel A (2001) PHA synthases: key enzymes of PHA biosynthesis. In: Biopolymers (Steinbüchel A, Doi, eds), Polyesters I, 3a. Wiley-VCH, Weinheim. pp. 173–215.
|
[28] | Steinbüchel A, Hein S (2001) Biochemical and molecular basis of microbial synthesis of polyhydroxyalkanoates in microorganisms. Adv Biochem Eng Biotechnol 71: 81–123. doi: 10.1007/3-540-40021-4_3
|
[29] | Pieper U, Steinbüchel A (1992) Identification, cloning and sequence analysis of the poly(3-hydroxyalcanoic acid) synthase gene of the Gram-positive bacterium Rhodococcus ruber. FEMS Microbiol Lett 96: 73–80. doi: 10.1016/0378-1097(92)90459-2
|
[30] | Valentin HE, Steinbüchel A (1993) Cloning and characterization of the Methylobacterium extorquens polyhydroxyalkanoic acid synthase structural gene. Appl Microbiol Biotechnol 39: 309–317. doi: 10.1007/bf00192084
|
[31] | Rodrigues MFA, Da Silva LF, Gomez JGC, Valentin HE, Steinbüchel A (1995) Biosynthesis of poly(3-hydroxybutyric acid-co-3-hydroxy-4-pentenoic acid) from unrelated substrates by Burkholderia sp. Appl Microbiol Biotechnol 53: 453–460. doi: 10.1007/bf02431923
|
[32] | Timm A, Steinbüchel A (1990) Formation of polyesters consisting of medium-chain-length 3-hydroxyalkanoic acids from gluconate by Pseudomonas aeruginosa and other fluorescent pseudomonads. Appl Environ Microbiol 56: 3360–3367.
|
[33] | Liebergesell M, Schmidt B, Steinbüchel A (1992) Isolation and identification of granule associated proteins relevant for poly(hydroxyalkanoic acid) biosynthesis in Chromatium vinosum D. FEMS Microbiol Lett 78: 227–232. doi: 10.1111/j.1574-6968.1992.tb05572.x
|
[34] | McCool GJ, Cannon MC (2001) PhaC and PhaR are required for polyhydroxyalkanoic acid synthase activity in Bacillus megaterium. J Bacteriol 183: 4235–4243. doi: 10.1128/jb.183.14.4235-4243.2001
|
[35] | Lütke-Eversloh T, Bergander K, Luftmann H, Steinbüchel A (2001) Identification of a new class of biopolymer: bacterial synthesis of a sulfur containing polymer with thioester linkages. Microbiology (SGM) 147: 11–19.
|
[36] | Schlegel HG, Lafferty RM (1971) Novel energy and carbon sources. A. The production of biomass from hydrogen and carbon dioxide. Adv Biochem Eng 1: 143–168. doi: 10.1007/bfb0044733
|
[37] | Kihlberg R (1972) The microbe as a source of food. Annu Rev Microbiol 26: 427–466. doi: 10.1146/annurev.mi.26.100172.002235
|
[38] | Schlegel HG, Lafferty R, Krauss I (1970a) The isolation of mutants not accumulating poly-β-hydroxybutyric acid. Arch Mikrobiol 71: 283–294. doi: 10.1007/bf00410161
|
[39] | Schlegel HG, Lafferty R, Krauss I (1970b) Bacterial mutants of Hydrogenomonas lacking poly-β-hydroxybutyric acid. Experientia 26: 554–555. doi: 10.1007/bf01898510
|
[40] | Mifune J, Nakamura S, Fukui T (2008) Targeted engineering of Cupriavidus necator chromosome for biosynthesis of poly(3-hydroxybutyrate-co-3-hydroxyhexan?oate)from vegetable oil. Can J Chem 86: 621–627. doi: 10.1139/v08-047
|
[41] | Schlegel HG, Kaltwasser H, Gottschalk G (1961) Ein Submersverfahren zur Kultur wasserstoffoxidierender Bakterien: Wachstumsphysiologische Untersuchungen. Arch Mikrobiol 38: 209–222. doi: 10.1007/bf00422356
|
[42] | Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a Laboratory Manual, 2nd edn. Cold Spring Harbor, New York. Cold Spring Harbor Laboratory.
|
[43] | Marmur J (1961) A procedure for the isolation of desoxyribonucleic acids from microorganisms. J Mol Biol 3: 208–218.
|
[44] | Birnboim HC, Doly J (1979) A rapid alkaline extraction procedure for screening recombinant plasmid DNA. Nucleic Acid Res 7: 1513–1523. doi: 10.1093/nar/7.6.1513
|
[45] | Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucl Acids Symp Ser 41: 95–98.
|
[46] | Hanahan D (1983) Studies on transformation of Escherichia coli with plasmids. J Mol Biol 166: 557–580. doi: 10.1016/s0022-2836(83)80284-8
|
[47] | Thompson J D, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position specific gap penalties and weight matrix choice. Nucleic Acids Res 22: 4673–80. doi: 10.1093/nar/22.22.4673
|
[48] | Raberg M, Reinecke F, Reichelt R, Malkus U, K?nig S, et al. (2008) Ralstonia eutropha H16 flagellation changes according to nutrient supply and state of poly(3-hydroxybutyrate) accumulation. Appl Environ Microbiol 62: 2540–2546. doi: 10.1128/aem.00440-08
|
[49] | Rabilloud T (1999) In: Proteome Research: Two-Dimensional Gel Electrophoresis and Identification Methods (Principles and Practice). Springer, Berlin.
|
[50] | Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72: 248–25. doi: 10.1006/abio.1976.9999
|
[51] | Shevchenko A, Wilm O, Vorm O, Mann M (1996) Mass spectrometric sequencing of proteins from silver-stained polyacrylamide gels. Anal Chem 68: 850–858. doi: 10.1021/ac950914h
|
[52] | Voigt B, Schweder T, Sibbald MJ, Albrecht D, Ehrenreich A, et al. (2006) The extracellular proteome of Bacillus licheniformis grown in different media and under different nutrient starvation conditions. Proteomics 6: 268–28. doi: 10.1002/pmic.200500091
|
[53] | P?tter M, Müller H, Reinecke F, Wieczorek R, Fricke F, et al. (2004) The complex structure of polyhydroxybutyrate (PHB) granules: four orthologous and paralogous phasins occur in Ralstonia eutropha. Microbiology (SGM) 150: 2301–2311. doi: 10.1099/mic.0.26970-0
|
[54] | Pfeiffer D, Jendrossek D (2011) Interaction between poly(3-hydroxybutyrate) granule-associated proteins as revealed by two-hybrid analysis and identification of a new phasin in Ralstonia eutropha H16. Microbiology (SGM) 157: 2795–2807. doi: 10.1099/mic.0.051508-0
|
[55] | Pfeiffer D, Jendrossek D (2012) Localization of poly(3-hydroxybutyrate) (PHB) granule-associated proteins during PHB granule formation and identification of two new phasins, PhaP6 and PhaP7, in Ralstonia eutropha H16. J Bacteriol 194: 5909–5921. doi: 10.1128/jb.00779-12
|
[56] | Wieczorek R, Pries A, Steinbüchel A, Mayer F (1995) Analysis of a 24-kilodalton protein associated with the polyhydroxyalkanoic acid granules in Alcaligenes eutrophus. J Bacteriol 177: 2425–2.
|
[57] | Heider J (2001) A new family of CoA-transferases. FEBS Lett 509: 345–349. doi: 10.1016/s0014-5793(01)03178-7
|
[58] | Aevarsson A, Seger K, Turley S, Sokatch JR, Hol WG (1999) Crystal structure of 2-oxoisovalerate dehydrogenase and the architecture of 2-oxo acid dehydrogenase multienzyme complexes. Nat Struct Biol 6: 785–792. doi: 10.1038/11563
|
[59] | Knapp JE, Carroll D, Lawson JE, Ernst SR, Reed LJ, et al. (2000) Expression, purification, and structural analysis of the trimeric form of the catalytic domain of the Escherichia coli dihydrolipoamide succinyltransferase. Protein Sci 9: 37–48. doi: 10.1110/ps.9.1.37
|
[60] | Fründ C, Priefert H, Steinbüchel A, Schlegel HG (1989) Biochemical and genetic analyses of acetoin catabolism in Alcaligenes eutrophus. J Bacteriol 171: 6539–6548.
|
[61] | Oppermann FB, Schmidt B, Steinbüchel A (1991) Purification and characterization of acetoin:2,6-dichlorophenolindophenol oxidoreductase, dihydrolipoamide dehydrogenase, and dihydrolipoamide acetyltransferase of the Pelobacter carbinolicus acetoin dehydrogenase enzyme system. J Bacteriol 173: 757–767.
|
[62] | Mizote T, Nakayama H (1989) The thiM locus and its relation to phosphorylation of hydroxethylthiazole in Escherichia coli. J Bacteriol 171: 3228–3232.
|
[63] | Arjunan P, Nemeria N, Brunskill A, Chandrasekhar K, Sax M, et al. (2002) Structure of the pyruvate dehydrogenase multienzyme complex E1 component from Escherichia coli at 1.85 ? resolution. Biochemistry 41: 5213–5221. doi: 10.1021/bi0118557
|
[64] | Milne JLS, Wu X, Borgnia M, Lengyel J, Jeffrey S, et al. (2006) Molecular structure of a 9-MDa icosahedral pyruvate dehydrogenase subcomplex containing the E2 and E3 enzymes using cryoelectron microscopy. J Biol Chem 281: 4364–4370. doi: 10.1074/jbc.m504363200
|
[65] | Dimroth P, Loyal R, Eggerer H (1977) Characterization of the isolated transferase subunit of citrate lyase as a CoA-Transferase. Evidence against a covalent enzyme-substrate intermediate. Eur J Biochem 80: 479–88. doi: 10.1111/j.1432-1033.1977.tb11903.x
|
[66] | Hersh LB, Jencks WP (1967) Coenzyme A transferase. Kinetics and exchange reactions . J Biol Chem 242: 3468–3480.
|
[67] | Rehm BHA (2003) Polyester synthases: natural catalysts for plastics. Biochem J 376: 15–33. doi: 10.1042/bj20031254
|
[68] | Kalousek S, Dennis D, Lubitz W (1992) Genetic engineering of PHB synthase from Alcaligenes eutrophus H16. FEMS Microbiol Rev 103: 426–427.
|
[69] | Rehm BHA, Antonio RV, Spiekermann P, Amara AA, Steinbüchel A (2002) Molecular characterization of the poly(3-hydroxybutyrate) (PHB) synthase from Ralstonia eutropha: in vitro evolution, site-specific mutagenesis and development of a PHB synthase protein model. Biochim Biophys Acta 1594: 178–190. doi: 10.1016/s0167-4838(02)00370-9
|
[70] | Taguchi S, Maehara A, Takase K, Nakahara M, Nakamura H, et al. (2001) Analysis of mutational effects of a polyhydroxybutyrate (PHB) polymerase on bacterial PHB accumulation using an in vivo assay system. FEMS Microbiol Lett 198: 65–71. doi: 10.1111/j.1574-6968.2001.tb10620.x
|
[71] | Cook AM, Schlegel HG (1978) Metabolite concentrations in Alcaligenes eutrophus H16 and a mutant defective in polyhydroxybutyrate synthesis. Arch Microbiol 119: 231–235. doi: 10.1007/bf00405400
|
[72] | Jung YM, Lee YH (1997) Investigation of regulatory mechanism of flux of acetyl-CoA in Alcaligenes eutrophus using PHB negative mutant and transformants harboring cloned phbCAB genes. J Microbiol Biotechnol 7: 215–22.
|
[73] | Steinbüchel A, Schlegel HG (1989) Excretion of pyruvate by mutants of Alcaligenes eutrophus, which are impaired in the accumulation of poly(β-hydroxybutyric acid) (PHB), under conditions permitting synthesis of PHB. Appl Microbiol Biotechnol 31: 168–175. doi: 10.1007/bf00262457
|
[74] | de Kok A, Hengeveld AF, Martin A, Westphal AH (1998) The pyruvate dehydrogenase multi-enzyme complex from Gram-negative bacteria. Biochim Biophys Acta 1385: 353–366. doi: 10.1016/s0167-4838(98)00079-x
|
[75] | Izumi Y, Matsumura Y, Tani Y, Yamada H (1982) Pyruvic acid production from 1,2-propandiol by thiamine requiring Acinetobacter sp 80-M. Agric Biol Chem 46: 2673–2678. doi: 10.1271/bbb1961.46.2673
|
[76] | Holzer H (1961) Wirkungsmechanismus von Thiaminpyrophosphat. Angew Chem 73: 721–727. doi: 10.1002/ange.19610732202
|
[77] | Xiao Z, Xu P (2007) Acetoin metabolism in bacteria. Crit Rev Biochem Microbiol 33: 127–140. doi: 10.1080/10408410701364604
|
[78] | Raberg M, Bechmann J. Brandt U, Schlüter J, Uischner B, et al. (2011) Versatile metabolic adaptations of Ralstonia eutropha H16 to a loss of PdhL, the E3 component of the pyruvate dehydrogenase complex. Appl Environ Microbiol 77: 2254–2263. doi: 10.1128/aem.02360-10
|
[79] | Wiegand G, Remington SJ (1986) Citrate synthase, structure, control, and mechanism. Annu Rev Biophys Biophys Chem 15: 97–117. doi: 10.1146/annurev.bb.15.060186.000525
|
[80] | Ruhr EM (1977) Regulation der Biosynthese von Poly-β-hydroxybutters?ure in Alcaligenes eutrophus H16. Ph.D. Thesis, University of G?ttingen.
|
[81] | Lindenkamp N, Schürmann M, Steinbüchel A (2012) A propionate CoA-transferase of Ralstonia eutropha H16 with broad substrate specificity catalyzing the CoA thioester formation of various carboxylic acids. Appl Microbiol Biotechnol 97: 7699–7709. doi: 10.1007/s00253-012-4624-9
|
[82] | Lee PT, Hsu AY, Ha HT, Clarke CF (1997) A C-methyltransferase involved in both ubiquinone and menaquinone biosynthesis: isolation and identification of the Escherichia coli ubiE gene. J Bacteriol 179: 1748–1754.
|
[83] | Burns RO, Umbarger HE, Gross SR (1963) The biosynthesis of leucine III. The conversion of α-hydroxy-βcarboxyisocaproate to α-ketoisocaproate. Biochemistry 2: 1053–1058. doi: 10.1021/bi00905a024
|
[84] | Allocati N, Federici L, Masulli M, Di Ilio C (2009) Glutathione transferases in bacteria. FEBS J 276: 58–75. doi: 10.1111/j.1742-4658.2008.06743.x
|