[1] | Fisher RA (1930) The Genetical Theory of Natural Selection. Oxford: The Clarendon Press.
|
[2] | Wright S (1931) Evolution in Mendelian Populations. Genetics.
|
[3] | Kimura M (1968) Evolutionary rate at the molecular level. Nature 217: 624–626. doi: 10.1038/217624a0
|
[4] | Gould SJ, Lewontin RC (1979) The Spandrels of San Marco and the Panglossian Paradigm: A Critique of the Adaptationist Programme. Proc R Soc B Biol Sci 205: 581–598. doi: 10.1098/rspb.1979.0086
|
[5] | Travisano M, Mongold JA, Bennett AF, Lenski RE (1995) Experimental Tests of the Roles of Adaptation, Chance, and History in Evolution. Science 267: 87–90. doi: 10.1126/science.7809610
|
[6] | Lenormand T, Roze D, Rousset F (2009) Stochasticity in evolution. Trends Ecol Evol 24: 157–165. doi: 10.1016/j.tree.2008.09.014
|
[7] | Losos JB (2011) Convergence, adaptation, and constraint. Evolution 65: 1827–1840. doi: 10.1111/j.1558-5646.2011.01289.x
|
[8] | Schluter D (2000) The Ecology of Adaptive Radiation. Oxford Uni. Oxford.
|
[9] | Stern DL (2013) The genetic causes of convergent evolution. Nat Rev Genet 14: 751–764. doi: 10.1038/nrg3483
|
[10] | Losos J, Jackman T, Larson A, Queiroz K, Rodriguez-Schettino L (1998) Contingency and determinism in replicated adaptive radiations of island lizards. Science 279: 2115–2118. doi: 10.1126/science.279.5359.2115
|
[11] | McKinnon JS, Rundle HD (2002) Speciation in nature: the threespine stickleback model systems. Trends Ecol Evol 17: 480–488. doi: 10.1016/s0169-5347(02)02579-x
|
[12] | Young KA, Snoeks J, Seehausen O (2009) Morphological diversity and the roles of contingency, chance and determinism in african cichlid radiations. PLoS One 4: e4740. doi: 10.1371/journal.pone.0004740
|
[13] | Manceau M, Domingues VS, Linnen CR, Rosenblum EB, Hoekstra HE (2010) Convergence in pigmentation at multiple levels: mutations, genes and function. Philos Trans R Soc Lond B Biol Sci 365: 2439–2450. doi: 10.1098/rstb.2010.0104
|
[14] | Johnson MA, Revell LJ, Losos JB (2010) Behavioral convergence and adaptive radiation: effects of habitat use on territorial behavior in Anolis lizards. Evolution 64: 1151–1159. doi: 10.1111/j.1558-5646.2009.00881.x
|
[15] | Lande R, Arnold S (1983) The measurement of selection on correlated characters. Evolution 37: 1210–1226. doi: 10.2307/2408842
|
[16] | Flatt T, Heyland A (2011) Mechanisms of Life History Evolution. The Genetics and Physiology of Life History Traits and Trade-Offs. Oxford Uni. Oxford.
|
[17] | Roff DA, Emerson K (2006) Epistasis and Dominance: Evidence for differential effects in life-history versus morphological traits. Evolution 60: 1981–1990. doi: 10.1111/j.0014-3820.2006.tb01836.x
|
[18] | Whitlock MC, Phillips PC, Moore FB-G, Tonsor SJ (1995) Multiple Fitness Peaks and Epistasis. Annu Rev Ecol Syst: 601–629.
|
[19] | Gavrilets S (2010) High-dimensional fitness landscapes and speciation. In: Pigliucci M, Muller G, editors. Evolution: the extended synthesis. Cambridge, MA: MIT Press. pp. 45–80.
|
[20] | Gould SJ (1989) Wonderful Life: The Burgess Shale and the Nature of History. W. W. Norton & Company.
|
[21] | Lobkovsky AE, Koonin EV (2012) Replaying the tape of life: quantification of the predictability of evolution. Front Genet 3: 246. doi: 10.3389/fgene.2012.00246
|
[22] | Teotónio H, Rose MR (2000) Variation in the reversibility of evolution. Nature 408: 463–466 doi:10.1038/35044070.
|
[23] | Teotónio H, Rose MR (2001) Perspective: Reverse Evolution. Evolution 55: 653–660. doi: 10.1111/j.0014-3820.2001.tb00800.x
|
[24] | Teotónio H, Matos M, Rose MR (2002) Reverse evolution of fitness in Drosophila melanogaster. J Evol Biol 15: 608–617. doi: 10.1046/j.1420-9101.2002.00424.x
|
[25] | Joshi A, Castillo RB, Mueller LD (2003) The contribution of ancestry, chance, and past and ongoing selection to adaptive evolution. J Genet 82: 147–162. doi: 10.1007/bf02715815
|
[26] | Sim?es P, Santos J, Fragata I, Mueller LD, Rose MR, et al. (2008) How repeatable is adaptive evolution? The role of geographical origin and founder effects in laboratory adaptation. Evolution 62: 1817–1829. doi: 10.1111/j.1558-5646.2008.00423.x
|
[27] | Fox CW, Wagner JD, Cline S, Thomas FA, Messina FJ (2011) Rapid Evolution of Lifespan in a Novel Environment: Sex-Specific Responses and Underlying Genetic Architecture. Evol Biol 38: 182–196. doi: 10.1007/s11692-011-9116-9
|
[28] | Melnyk AH, Kassen R (2011) Adaptive landscapes in evolving populations of Pseudomonas fluorescens. Evolution 65: 3048–3059. doi: 10.1111/j.1558-5646.2011.01333.x
|
[29] | Cohan FM, Hoffmann AA (1986) Genetic divergence under uniform selection. II Different responses to selection for knockdown resistance to ethanol among Drosophila melanogaster populations and their replicate lines. Genetics 114: 145–163. doi: 10.1038/hdy.1987.71
|
[30] | Cohan FM, Hoffmann AA (1989) Uniform Selection as a Diversifying Force in Evolution: Evidence from Drosophila. Am Nat 134: 613–637. doi: 10.1086/285000
|
[31] | Arendt J, Reznick D (2007) Convergence and parallelism reconsidered: what have we learned about the genetics of adaptation? Trends Ecol Evol 23: 26–32. doi: 10.1016/j.tree.2007.09.011
|
[32] | Elmer KR, Meyer A (2011) Adaptation in the age of ecological genomics: insights from parallelism and convergence. Trends Ecol Evol 26: 298–306. doi: 10.1016/j.tree.2011.02.008
|
[33] | Colegrave N, Buckling A (2005) Microbial experiments on adaptive landscapes. BioEssays 27: 1167–1173. doi: 10.1002/bies.20292
|
[34] | Collins S, Sültemeyer D, Bell G (2006) Rewinding the tape: selection of algae adapted to high CO2 at current and pleistocene levels of CO2. Evolution 60: 1392–1401. doi: 10.1111/j.0014-3820.2006.tb01218.x
|
[35] | Lee CE, Kiergaard M, Gelembiuk GW, Eads BD, Posavi M (2011) Pumping ions: rapid parallel evolution of ionic regulation following habitat invasions. Evolution 65: 2229–2244. doi: 10.1111/j.1558-5646.2011.01308.x
|
[36] | Wood TE, Burke JM, Rieseberg LH (2005) Parallel genotypic adaptation: when evolution repeats itself. Genetica 123: 157–170. doi: 10.1007/s10709-003-2738-9
|
[37] | Saxer G, Doebeli M, Travisano M (2010) The repeatability of adaptive radiation during long-term experimental evolution of Escherichia coli in a multiple nutrient environment. PLoS One 5: e14184. doi: 10.1371/journal.pone.0014184
|
[38] | Hewitt GM (2000) The genetic legacy of the Quaternary ice ages. Nature 405: 907–913. doi: 10.1038/35016000
|
[39] | Krimbas CB, Loukas M (1980) The inversion polymorphism of Drosophila subobscura. Evol Biol 12: 163–234. doi: 10.1007/978-1-4615-6959-6_4
|
[40] | Huey RB, Gilchrist GW, Carlson ML, Berrigan D, Serra L (2000) Rapid evolution of a geographic cline in size in an introduced fly. Science 287: 308–309. doi: 10.1126/science.287.5451.308
|
[41] | Rezende EL, Balanyà J, Rodríguez-Trelles F, Rego C, Fragata I, et al. (2010) Climate change and chromosomal inversions in Drosophila subobscura. Clim Res 43: 103–114. doi: 10.3354/cr00869
|
[42] | Balanyà J, Oller JM, Huey RB, Gilchrist GW, Serra L (2006) Global genetic change tracks global climate warming in Drosophila subobscura. Science 313: 1773–1775. doi: 10.1126/science.1131002
|
[43] | Santos M (2007) Evolution of total net fitness in thermal lines: Drosophila subobscura likes it “warm.”. J Evol Biol 20: 2361–2370. doi: 10.1111/j.1420-9101.2007.01408.x
|
[44] | Sim?es P, Rose MR, Duarte A, Gon?alves R, Matos M (2007) Evolutionary domestication in Drosophila subobscura. J Evol Biol 20: 758–766. doi: 10.1111/j.1420-9101.2006.01244.x
|
[45] | Santos J, Pascual M, Sim?es P, Fragata I, Lima M, et al. (2012) From nature to the laboratory: the impact of founder effects on adaptation. J Evol Biol 25: 2607–2622. doi: 10.1111/jeb.12008
|
[46] | Service PM (1987) Physiological Mechanisms of Increased Stress Resistance in Drosophila melanogaster Selected for Postponed Senescence. Physiol Zool 60: 321–326.
|
[47] | Excoffier L, Lischer H (2010) Arlequin suite ver 3.5: A new series of programs to perform population genetics analyses under Linux and Windows. Mol Ecol Resour 10: 564–567. doi: 10.1111/j.1755-0998.2010.02847.x
|
[48] | Rose MR, Passananti H, Matos M, editors (2004) Methuselah Flies: A Case Study in the Evolution of Aging. Singapure: World Scientific Publishing.
|
[49] | Jong G de, Noordwijk AJ van (1992) Acquisition and allocation of resources: genetic (co) variances, selection, and life histories. Am Nat 139: 749–770. doi: 10.1086/285356
|
[50] | Monclus M, Prevosti A (1971) The relationship between mating speed and wing length in Drosophila subobscura. Evolution 25: 214–217. doi: 10.2307/2406513
|
[51] | Santos M, Iriarte PF, Céspedes W (2005) Genetics and geometry of canalization and developmental stability in Drosophila subobscura. BMC Evol Biol 5: 7.
|
[52] | Benjamini Y, Yekutieli D (2001) The control of the false discovery rate in multiple testing under dependency. Ann Stat 29: 1165–1188. doi: 10.1214/aos/1013699998
|
[53] | Adams DC, Collyer ML (2009) A general framework for the analysis of phenotypic trajectories in evolutionary studies. Evolution 63: 1143–1154. doi: 10.1111/j.1558-5646.2009.00649.x
|
[54] | R CDT (2008) R: a language and environment for statistical computing. Version 2.70. R Found Stat Comput.
|
[55] | Adler D, D.Murdoch (2012) rgl: 3D visualization device system (OpenGL). R Package version 092894.
|
[56] | Chippindale AK (2006) Experimental Evolution. In: Fox C, Wolf J, editors. Evolutionary genetics: concepts and case studies. London. pp. 482–501.
|
[57] | Flores-Moya A, Costas E, López-Rodas V (2008) Roles of adaptation, chance and history in the evolution of the dinoflagellate Prorocentrum triestinum. Naturwissenschaften 95: 697–703. doi: 10.1007/s00114-008-0372-1
|
[58] | Spor A, Kvitek DJ, Nidelet T, Martin J, Legrand J, et al.. (2013) Phenotypic and Genotypic Convergences Are Influenced By Historical Contingency and Environment in Yeast. Evolution 1–19.
|
[59] | Blount ZD, Borland CZ, Lenski RE (2008) Historical contingency and the evolution of a key innovation in an experimental population of Escherichia coli. Proc Natl Acad Sci U S A 105: 7899–7906. doi: 10.1073/pnas.0803151105
|
[60] | Meyer JR, Dobias DT, Weitz JS, Barrick JE, Ryan T, et al. (2012) Repeatability and Contingency in the Evolution of a Key Innovation in Phage Lambda. Science 335: 428–432. doi: 10.1126/science.1214449
|
[61] | Bell G (2013) The incidental response to uniform natural selection. Biol Lett 9: 2013–2015. doi: 10.1098/rsbl.2013.0215
|
[62] | Bieri J, Kawecki TJ (2003) Genetic architecture of differences between populations of cowpea weevil (Callosobruchus maculatus) evolved in the same environment. Evolution 57: 274–287. doi: 10.1554/0014-3820(2003)057[0274:gaodbp]2.0.co;2
|
[63] | Kawecki TJ, Mery F (2003) Evolutionary conservatism of geographic variation in host preference in Callosobruchus maculatus. Ecol Entomol 28: 449–456. doi: 10.1046/j.1365-2311.2003.00526.x
|
[64] | Kawecki TJ, Mery F (2006) Genetically idiosyncratic responses of Drosophila melanogaster populations to selection for improved learning ability. J Evol Biol 19: 1265–1274. doi: 10.1111/j.1420-9101.2005.01071.x
|
[65] | Griffiths J, Schiffer M, Hoffmann A (2005) Clinal variation and laboratory adaptation in the rainforest species Drosophila birchii for stress resistance, wing size, wing shape and development time. J Evol Biol 18: 213–222. doi: 10.1111/j.1420-9101.2004.00782.x
|
[66] | Colegrave N, Collins S (2008) Experimental evolution: experimental evolution and evolvability. Heredity (Edinb) 100: 464–470. doi: 10.1038/sj.hdy.6801095
|
[67] | Service PM, Rose MR (1985) Genetic Covariation Among Life-History Components: The Effect of Novel Environments. Evolution 39: 943. doi: 10.2307/2408694
|
[68] | Burke MK, Dunham JP, Shahrestani P, Thornton KR, Rose MR, et al. (2010) Genome-wide analysis of a long-term evolution experiment with Drosophila. Nature 467: 587–590. doi: 10.1038/nature09352
|
[69] | Matos M, Sim?es P, Duarte A, Rego C, Avelar T, et al. (2004) Convergence to a Novel Environment: Comparative Method versus Experimental Evolution. Evolution 58: 1503–1510. doi: 10.1554/03-711
|
[70] | Santos M, Fragata I, Santos J, Sim?es P, Marques A, et al. (2010) Playing Darwin. Part B. 20 years of domestication in Drosophila subobscura. Theory Biosci 129: 97–102. doi: 10.1007/s12064-010-0086-8
|
[71] | Conte GL, Arnegard ME, Peichel CL, Schluter D (2012) The probability of genetic parallelism and convergence in natural populations. Proc Biol Sci 279: 5039–5047. doi: 10.1098/rspb.2012.2146
|
[72] | Martin A, Orgogozo V (2013) The Loci of repeated evolution: a catalog of genetic hotspots of phenotypic variation. Evolution 67: 1235–1250. doi: 10.1111/evo.12081
|
[73] | Tenaillon O, Rodríguez-Verdugo A, Gaut RL, McDonald P, Bennett AF, et al. (2012) The molecular diversity of adaptive convergence. Science 335: 457–461. doi: 10.1126/science.1212986
|
[74] | Bedhomme S, Lafforgue G, Elena SF (2013) Genotypic but not phenotypic historical contingency revealed by viral experimental evolution. BMC Evol Biol 13: 46. doi: 10.1186/1471-2148-13-46
|
[75] | Woods R, Schneider D, Winkworth CL, Riley MA, Lenski RE (2006) Tests of parallel molecular evolution in a long-term experiment with Escherichia coli. Proc Natl Acad Sci U S A 103: 9107–9112. doi: 10.1073/pnas.0602917103
|
[76] | Teotónio H, Chelo IM, Bradi? M, Rose MR, Long AD (2009) Experimental evolution reveals natural selection on standing genetic variation. Nat Genet 41: 251–257. doi: 10.1038/ng.289
|
[77] | Gilchrist GW, Jeffers LM, West B, Folk D, Suess J, et al. (2008) Clinal patterns of desiccation and starvation resistance in ancestral and invading populations of Drosophila subobscura. Evol Appl 1: 513–523. doi: 10.1111/j.1752-4571.2008.00040.x
|