全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS ONE  2014 

Laboratory Selection Quickly Erases Historical Differentiation

DOI: 10.1371/journal.pone.0096227

Full-Text   Cite this paper   Add to My Lib

Abstract:

The roles of history, chance and selection have long been debated in evolutionary biology. Though uniform selection is expected to lead to convergent evolution between populations, contrasting histories and chance events might prevent them from attaining the same adaptive state, rendering evolution somewhat unpredictable. The predictability of evolution has been supported by several studies documenting repeatable adaptive radiations and convergence in both nature and laboratory. However, other studies suggest divergence among populations adapting to the same environment. Despite the relevance of this issue, empirical data is lacking for real-time adaptation of sexual populations with deeply divergent histories and ample standing genetic variation across fitness-related traits. Here we analyse the real-time evolutionary dynamics of Drosophila subobscura populations, previously differentiated along the European cline, when colonizing a new common environment. By analysing several life-history, physiological and morphological traits, we show that populations quickly converge to the same adaptive state through different evolutionary paths. In contrast with other studies, all analysed traits fully converged regardless of their association with fitness. Selection was able to erase the signature of history in highly differentiated populations after just a short number of generations, leading to consistent patterns of convergent evolution.

References

[1]  Fisher RA (1930) The Genetical Theory of Natural Selection. Oxford: The Clarendon Press.
[2]  Wright S (1931) Evolution in Mendelian Populations. Genetics.
[3]  Kimura M (1968) Evolutionary rate at the molecular level. Nature 217: 624–626. doi: 10.1038/217624a0
[4]  Gould SJ, Lewontin RC (1979) The Spandrels of San Marco and the Panglossian Paradigm: A Critique of the Adaptationist Programme. Proc R Soc B Biol Sci 205: 581–598. doi: 10.1098/rspb.1979.0086
[5]  Travisano M, Mongold JA, Bennett AF, Lenski RE (1995) Experimental Tests of the Roles of Adaptation, Chance, and History in Evolution. Science 267: 87–90. doi: 10.1126/science.7809610
[6]  Lenormand T, Roze D, Rousset F (2009) Stochasticity in evolution. Trends Ecol Evol 24: 157–165. doi: 10.1016/j.tree.2008.09.014
[7]  Losos JB (2011) Convergence, adaptation, and constraint. Evolution 65: 1827–1840. doi: 10.1111/j.1558-5646.2011.01289.x
[8]  Schluter D (2000) The Ecology of Adaptive Radiation. Oxford Uni. Oxford.
[9]  Stern DL (2013) The genetic causes of convergent evolution. Nat Rev Genet 14: 751–764. doi: 10.1038/nrg3483
[10]  Losos J, Jackman T, Larson A, Queiroz K, Rodriguez-Schettino L (1998) Contingency and determinism in replicated adaptive radiations of island lizards. Science 279: 2115–2118. doi: 10.1126/science.279.5359.2115
[11]  McKinnon JS, Rundle HD (2002) Speciation in nature: the threespine stickleback model systems. Trends Ecol Evol 17: 480–488. doi: 10.1016/s0169-5347(02)02579-x
[12]  Young KA, Snoeks J, Seehausen O (2009) Morphological diversity and the roles of contingency, chance and determinism in african cichlid radiations. PLoS One 4: e4740. doi: 10.1371/journal.pone.0004740
[13]  Manceau M, Domingues VS, Linnen CR, Rosenblum EB, Hoekstra HE (2010) Convergence in pigmentation at multiple levels: mutations, genes and function. Philos Trans R Soc Lond B Biol Sci 365: 2439–2450. doi: 10.1098/rstb.2010.0104
[14]  Johnson MA, Revell LJ, Losos JB (2010) Behavioral convergence and adaptive radiation: effects of habitat use on territorial behavior in Anolis lizards. Evolution 64: 1151–1159. doi: 10.1111/j.1558-5646.2009.00881.x
[15]  Lande R, Arnold S (1983) The measurement of selection on correlated characters. Evolution 37: 1210–1226. doi: 10.2307/2408842
[16]  Flatt T, Heyland A (2011) Mechanisms of Life History Evolution. The Genetics and Physiology of Life History Traits and Trade-Offs. Oxford Uni. Oxford.
[17]  Roff DA, Emerson K (2006) Epistasis and Dominance: Evidence for differential effects in life-history versus morphological traits. Evolution 60: 1981–1990. doi: 10.1111/j.0014-3820.2006.tb01836.x
[18]  Whitlock MC, Phillips PC, Moore FB-G, Tonsor SJ (1995) Multiple Fitness Peaks and Epistasis. Annu Rev Ecol Syst: 601–629.
[19]  Gavrilets S (2010) High-dimensional fitness landscapes and speciation. In: Pigliucci M, Muller G, editors. Evolution: the extended synthesis. Cambridge, MA: MIT Press. pp. 45–80.
[20]  Gould SJ (1989) Wonderful Life: The Burgess Shale and the Nature of History. W. W. Norton & Company.
[21]  Lobkovsky AE, Koonin EV (2012) Replaying the tape of life: quantification of the predictability of evolution. Front Genet 3: 246. doi: 10.3389/fgene.2012.00246
[22]  Teotónio H, Rose MR (2000) Variation in the reversibility of evolution. Nature 408: 463–466 doi:10.1038/35044070.
[23]  Teotónio H, Rose MR (2001) Perspective: Reverse Evolution. Evolution 55: 653–660. doi: 10.1111/j.0014-3820.2001.tb00800.x
[24]  Teotónio H, Matos M, Rose MR (2002) Reverse evolution of fitness in Drosophila melanogaster. J Evol Biol 15: 608–617. doi: 10.1046/j.1420-9101.2002.00424.x
[25]  Joshi A, Castillo RB, Mueller LD (2003) The contribution of ancestry, chance, and past and ongoing selection to adaptive evolution. J Genet 82: 147–162. doi: 10.1007/bf02715815
[26]  Sim?es P, Santos J, Fragata I, Mueller LD, Rose MR, et al. (2008) How repeatable is adaptive evolution? The role of geographical origin and founder effects in laboratory adaptation. Evolution 62: 1817–1829. doi: 10.1111/j.1558-5646.2008.00423.x
[27]  Fox CW, Wagner JD, Cline S, Thomas FA, Messina FJ (2011) Rapid Evolution of Lifespan in a Novel Environment: Sex-Specific Responses and Underlying Genetic Architecture. Evol Biol 38: 182–196. doi: 10.1007/s11692-011-9116-9
[28]  Melnyk AH, Kassen R (2011) Adaptive landscapes in evolving populations of Pseudomonas fluorescens. Evolution 65: 3048–3059. doi: 10.1111/j.1558-5646.2011.01333.x
[29]  Cohan FM, Hoffmann AA (1986) Genetic divergence under uniform selection. II Different responses to selection for knockdown resistance to ethanol among Drosophila melanogaster populations and their replicate lines. Genetics 114: 145–163. doi: 10.1038/hdy.1987.71
[30]  Cohan FM, Hoffmann AA (1989) Uniform Selection as a Diversifying Force in Evolution: Evidence from Drosophila. Am Nat 134: 613–637. doi: 10.1086/285000
[31]  Arendt J, Reznick D (2007) Convergence and parallelism reconsidered: what have we learned about the genetics of adaptation? Trends Ecol Evol 23: 26–32. doi: 10.1016/j.tree.2007.09.011
[32]  Elmer KR, Meyer A (2011) Adaptation in the age of ecological genomics: insights from parallelism and convergence. Trends Ecol Evol 26: 298–306. doi: 10.1016/j.tree.2011.02.008
[33]  Colegrave N, Buckling A (2005) Microbial experiments on adaptive landscapes. BioEssays 27: 1167–1173. doi: 10.1002/bies.20292
[34]  Collins S, Sültemeyer D, Bell G (2006) Rewinding the tape: selection of algae adapted to high CO2 at current and pleistocene levels of CO2. Evolution 60: 1392–1401. doi: 10.1111/j.0014-3820.2006.tb01218.x
[35]  Lee CE, Kiergaard M, Gelembiuk GW, Eads BD, Posavi M (2011) Pumping ions: rapid parallel evolution of ionic regulation following habitat invasions. Evolution 65: 2229–2244. doi: 10.1111/j.1558-5646.2011.01308.x
[36]  Wood TE, Burke JM, Rieseberg LH (2005) Parallel genotypic adaptation: when evolution repeats itself. Genetica 123: 157–170. doi: 10.1007/s10709-003-2738-9
[37]  Saxer G, Doebeli M, Travisano M (2010) The repeatability of adaptive radiation during long-term experimental evolution of Escherichia coli in a multiple nutrient environment. PLoS One 5: e14184. doi: 10.1371/journal.pone.0014184
[38]  Hewitt GM (2000) The genetic legacy of the Quaternary ice ages. Nature 405: 907–913. doi: 10.1038/35016000
[39]  Krimbas CB, Loukas M (1980) The inversion polymorphism of Drosophila subobscura. Evol Biol 12: 163–234. doi: 10.1007/978-1-4615-6959-6_4
[40]  Huey RB, Gilchrist GW, Carlson ML, Berrigan D, Serra L (2000) Rapid evolution of a geographic cline in size in an introduced fly. Science 287: 308–309. doi: 10.1126/science.287.5451.308
[41]  Rezende EL, Balanyà J, Rodríguez-Trelles F, Rego C, Fragata I, et al. (2010) Climate change and chromosomal inversions in Drosophila subobscura. Clim Res 43: 103–114. doi: 10.3354/cr00869
[42]  Balanyà J, Oller JM, Huey RB, Gilchrist GW, Serra L (2006) Global genetic change tracks global climate warming in Drosophila subobscura. Science 313: 1773–1775. doi: 10.1126/science.1131002
[43]  Santos M (2007) Evolution of total net fitness in thermal lines: Drosophila subobscura likes it “warm.”. J Evol Biol 20: 2361–2370. doi: 10.1111/j.1420-9101.2007.01408.x
[44]  Sim?es P, Rose MR, Duarte A, Gon?alves R, Matos M (2007) Evolutionary domestication in Drosophila subobscura. J Evol Biol 20: 758–766. doi: 10.1111/j.1420-9101.2006.01244.x
[45]  Santos J, Pascual M, Sim?es P, Fragata I, Lima M, et al. (2012) From nature to the laboratory: the impact of founder effects on adaptation. J Evol Biol 25: 2607–2622. doi: 10.1111/jeb.12008
[46]  Service PM (1987) Physiological Mechanisms of Increased Stress Resistance in Drosophila melanogaster Selected for Postponed Senescence. Physiol Zool 60: 321–326.
[47]  Excoffier L, Lischer H (2010) Arlequin suite ver 3.5: A new series of programs to perform population genetics analyses under Linux and Windows. Mol Ecol Resour 10: 564–567. doi: 10.1111/j.1755-0998.2010.02847.x
[48]  Rose MR, Passananti H, Matos M, editors (2004) Methuselah Flies: A Case Study in the Evolution of Aging. Singapure: World Scientific Publishing.
[49]  Jong G de, Noordwijk AJ van (1992) Acquisition and allocation of resources: genetic (co) variances, selection, and life histories. Am Nat 139: 749–770. doi: 10.1086/285356
[50]  Monclus M, Prevosti A (1971) The relationship between mating speed and wing length in Drosophila subobscura. Evolution 25: 214–217. doi: 10.2307/2406513
[51]  Santos M, Iriarte PF, Céspedes W (2005) Genetics and geometry of canalization and developmental stability in Drosophila subobscura. BMC Evol Biol 5: 7.
[52]  Benjamini Y, Yekutieli D (2001) The control of the false discovery rate in multiple testing under dependency. Ann Stat 29: 1165–1188. doi: 10.1214/aos/1013699998
[53]  Adams DC, Collyer ML (2009) A general framework for the analysis of phenotypic trajectories in evolutionary studies. Evolution 63: 1143–1154. doi: 10.1111/j.1558-5646.2009.00649.x
[54]  R CDT (2008) R: a language and environment for statistical computing. Version 2.70. R Found Stat Comput.
[55]  Adler D, D.Murdoch (2012) rgl: 3D visualization device system (OpenGL). R Package version 092894.
[56]  Chippindale AK (2006) Experimental Evolution. In: Fox C, Wolf J, editors. Evolutionary genetics: concepts and case studies. London. pp. 482–501.
[57]  Flores-Moya A, Costas E, López-Rodas V (2008) Roles of adaptation, chance and history in the evolution of the dinoflagellate Prorocentrum triestinum. Naturwissenschaften 95: 697–703. doi: 10.1007/s00114-008-0372-1
[58]  Spor A, Kvitek DJ, Nidelet T, Martin J, Legrand J, et al.. (2013) Phenotypic and Genotypic Convergences Are Influenced By Historical Contingency and Environment in Yeast. Evolution 1–19.
[59]  Blount ZD, Borland CZ, Lenski RE (2008) Historical contingency and the evolution of a key innovation in an experimental population of Escherichia coli. Proc Natl Acad Sci U S A 105: 7899–7906. doi: 10.1073/pnas.0803151105
[60]  Meyer JR, Dobias DT, Weitz JS, Barrick JE, Ryan T, et al. (2012) Repeatability and Contingency in the Evolution of a Key Innovation in Phage Lambda. Science 335: 428–432. doi: 10.1126/science.1214449
[61]  Bell G (2013) The incidental response to uniform natural selection. Biol Lett 9: 2013–2015. doi: 10.1098/rsbl.2013.0215
[62]  Bieri J, Kawecki TJ (2003) Genetic architecture of differences between populations of cowpea weevil (Callosobruchus maculatus) evolved in the same environment. Evolution 57: 274–287. doi: 10.1554/0014-3820(2003)057[0274:gaodbp]2.0.co;2
[63]  Kawecki TJ, Mery F (2003) Evolutionary conservatism of geographic variation in host preference in Callosobruchus maculatus. Ecol Entomol 28: 449–456. doi: 10.1046/j.1365-2311.2003.00526.x
[64]  Kawecki TJ, Mery F (2006) Genetically idiosyncratic responses of Drosophila melanogaster populations to selection for improved learning ability. J Evol Biol 19: 1265–1274. doi: 10.1111/j.1420-9101.2005.01071.x
[65]  Griffiths J, Schiffer M, Hoffmann A (2005) Clinal variation and laboratory adaptation in the rainforest species Drosophila birchii for stress resistance, wing size, wing shape and development time. J Evol Biol 18: 213–222. doi: 10.1111/j.1420-9101.2004.00782.x
[66]  Colegrave N, Collins S (2008) Experimental evolution: experimental evolution and evolvability. Heredity (Edinb) 100: 464–470. doi: 10.1038/sj.hdy.6801095
[67]  Service PM, Rose MR (1985) Genetic Covariation Among Life-History Components: The Effect of Novel Environments. Evolution 39: 943. doi: 10.2307/2408694
[68]  Burke MK, Dunham JP, Shahrestani P, Thornton KR, Rose MR, et al. (2010) Genome-wide analysis of a long-term evolution experiment with Drosophila. Nature 467: 587–590. doi: 10.1038/nature09352
[69]  Matos M, Sim?es P, Duarte A, Rego C, Avelar T, et al. (2004) Convergence to a Novel Environment: Comparative Method versus Experimental Evolution. Evolution 58: 1503–1510. doi: 10.1554/03-711
[70]  Santos M, Fragata I, Santos J, Sim?es P, Marques A, et al. (2010) Playing Darwin. Part B. 20 years of domestication in Drosophila subobscura. Theory Biosci 129: 97–102. doi: 10.1007/s12064-010-0086-8
[71]  Conte GL, Arnegard ME, Peichel CL, Schluter D (2012) The probability of genetic parallelism and convergence in natural populations. Proc Biol Sci 279: 5039–5047. doi: 10.1098/rspb.2012.2146
[72]  Martin A, Orgogozo V (2013) The Loci of repeated evolution: a catalog of genetic hotspots of phenotypic variation. Evolution 67: 1235–1250. doi: 10.1111/evo.12081
[73]  Tenaillon O, Rodríguez-Verdugo A, Gaut RL, McDonald P, Bennett AF, et al. (2012) The molecular diversity of adaptive convergence. Science 335: 457–461. doi: 10.1126/science.1212986
[74]  Bedhomme S, Lafforgue G, Elena SF (2013) Genotypic but not phenotypic historical contingency revealed by viral experimental evolution. BMC Evol Biol 13: 46. doi: 10.1186/1471-2148-13-46
[75]  Woods R, Schneider D, Winkworth CL, Riley MA, Lenski RE (2006) Tests of parallel molecular evolution in a long-term experiment with Escherichia coli. Proc Natl Acad Sci U S A 103: 9107–9112. doi: 10.1073/pnas.0602917103
[76]  Teotónio H, Chelo IM, Bradi? M, Rose MR, Long AD (2009) Experimental evolution reveals natural selection on standing genetic variation. Nat Genet 41: 251–257. doi: 10.1038/ng.289
[77]  Gilchrist GW, Jeffers LM, West B, Folk D, Suess J, et al. (2008) Clinal patterns of desiccation and starvation resistance in ancestral and invading populations of Drosophila subobscura. Evol Appl 1: 513–523. doi: 10.1111/j.1752-4571.2008.00040.x

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133