[1] | Chen M, Przyborowski M, Berthiaume F (2009) Stem cells for skin tissue engineering and wound healing. Crit Rev Biomed Eng 37: 399–421. doi: 10.1615/critrevbiomedeng.v37.i4-5.50
|
[2] | Simpson CL, Patel DM, Green KJ (2011) Deconstructing the skin: cytoarchitectural determinants of epidermal morphogenesis. Nat Rev Mol Cell Biol 12: 565–580. doi: 10.1038/nrm3175
|
[3] | Wendt H, Hillmer A, Reimers K, Kuhbier JW, Schafer-Nolte F, et al. (2011) Artificial skin-culturing of different skin cell lines for generating an artificial skin substitute on cross-weaved spider silk fibres. PLoS ONE 6: e21833. doi: 10.1371/journal.pone.0021833
|
[4] | Neuman MG, Nanau RM, Oruna L, Coto G (2011) In vitro anti-inflammatory effects of hyaluronic acid in ethanol-induced damage in skin cells. J Pharm Pharm Sci 14: 425–437.
|
[5] | Kirschner N, Houdek P, Fromm M, Moll I, Brandner JM (2010) Tight junctions form a barrier in human epidermis. Eur J Cell Biol 89: 839–842. doi: 10.1016/j.ejcb.2010.07.010
|
[6] | Balbino CA, Pereira LM, Curi R (2005) Mechanisms involved in wound healing: a revision. Rev Bras Cienc Farm 41: 27–51.
|
[7] | Balaji S, Keswani SG, Crombleholme TM (2012) The Role of Mesenchymal Stem Cells in the Regenerative Wound Healing Phenotype. Advances in wound care 1: 159–165. doi: 10.1089/wound.2012.0361
|
[8] | Fuchs E, Horsley V (2008) More than one way to skin. Genes Dev 22: 976–985. doi: 10.1101/gad.1645908
|
[9] | Zuk PA, Zhu M, Ashjian P, De Ugarte DA, Huang JI, et al. (2002) Human adipose tissue is a source of multipotent stem cells. Mol Biol Cell 13: 4279–4295. doi: 10.1091/mbc.e02-02-0105
|
[10] | Zuk PA, Zhu M, Mizuno H, Huang J, Futrell JW, et al. (2001) Multilineage cells from human adipose tissue: implications for cell-based therapies. Tissue Eng 7: 211–228. doi: 10.1089/107632701300062859
|
[11] | Sterodimas A, de Faria J, Nicaretta B, Pitanguy I (2009) Tissue engineering with adipose-derived stem cells (ADSCs): current and future applications. J Plast Reconstr Aesthet Surg 63: 1886–1892. doi: 10.1016/j.bjps.2009.10.028
|
[12] | Peroni D, Scambi I, Pasini A, Lisi V, Bifari F, et al. (2008) Stem molecular signature of adipose-derived stromal cells. Exp Cell Res 314: 603–615. doi: 10.1016/j.yexcr.2007.10.007
|
[13] | Sudhakar Y, Kuotsu K, Bandyopadhyay AK (2006) Buccal bioadhesive drug delivery–a promising option for orally less efficient drugs. J Control Release 114: 15–40. doi: 10.1016/j.jconrel.2006.04.012
|
[14] | Shimamura MK, Kamata K, Yao A, Deguchi T (2005) Scattering functions of knotted ring polymers. Phys Rev E Stat Nonlin Soft Matter Phys 72: 041804. doi: 10.1103/physreve.72.041804
|
[15] | Ramlia NA, Wonga TW (2011) Sodium carboxymethylcellulose scaffolds and their physicochemical effects on partial thickness wound healing. Int J Pharm 403: 73–82. doi: 10.1016/j.ijpharm.2010.10.023
|
[16] | Meirelles L S, Nardi NB (2009) Methodology, biology and clinical applications of mesenchymal stem cells. Front Biosci 14: 4281–4298. doi: 10.2741/3528
|
[17] | Phinney DG, Kopen G, Isaacson RL, Prockop DJ (1999) Plastic adherent stromal cells from the bone marrow of commonly used strains of inbred mice: variations in yield, growth, and differentiation. J Cell Biochem 72: 570–585. doi: 10.1002/(sici)1097-4644(19990315)72:4<570::aid-jcb12>3.0.co;2-w
|
[18] | Gutiérrez-Fernández M, Rodríguez-Frutos B, Ramos-Cejudo J, Vallejo-Cremades TM, Fuentes B, et al. (2013) Effects of intravenous administration of allogenic bone marrow- and adipose tissue-derived mesenchymal stem cells on functional recovery and brain repair markers in experimental ischemic stroke. Stem Cell Res Ther. 4: 11. doi: 10.1186/scrt159
|
[19] | Speit G, Hartmann A (1999) The comet assay (single-cell gel test). A sensitive genotoxicity test for the detection of DNA damage and repair. Methods Mol Biol 113: 203–212. doi: 10.1385/1-59259-675-4:203
|
[20] | Tice RR, Strauss GH (1995) The single cell gel electrophoresis/comet assay: a potential tool for detecting radiation-induced DNA damage in humans. Stem Cells 13: 207–214.
|
[21] | Nadin SB, Vargas-Roig LM, Ciocca DR (2001) A silver staining method for single-cell gel assay. J Histochem Cytochem 49: 1183–1186. doi: 10.1177/002215540104900912
|
[22] | Hartmann A, Speit G (1997) The contribution of cytotoxicity to DNA-effects in the single cell gel test (comet assay). Toxicology Letters 90: 183–188. doi: 10.1016/s0378-4274(96)03847-7
|
[23] | Thomas P, Holland N, Bolognesi C, Kirsch-Volders M, Bonassi S, et al. (2009) Buccal micronucleus cytome assay. Nat Protoc 4: 825–837. doi: 10.1038/nprot.2009.53
|
[24] | Fenech M (2000) The in vitro micronucleus technique. Mutat Res. 455: 81–95. doi: 10.1016/s0027-5107(00)00065-8
|
[25] | Kim CH, Lee JH, Won JH, Cho MK (2011) Mesenchymal stem cells improve wound healing in vivo via early activation of matrix metalloproteinase-9 and vascular endothelial growth factor. J Korean Med Sci 26: 726–733. doi: 10.3346/jkms.2011.26.6.726
|
[26] | Xavier LL, Viola GG, Ferraz AC, Da Cunha C, Deonizio JM, et al. (2005) A simple and fast densitometric method for the analysis of tyrosine hydroxylase immunoreactivity in the substantia nigra pars compacta and in the ventral tegmental area. Brain Res Brain Res Protoc 16: 58–64. doi: 10.1016/j.brainresprot.2005.10.002
|
[27] | de Souza DB, Silva D, Cortez CM, Costa WS, Sampaio FJ (2012) Effects of chronic stress on penile corpus cavernosum of rats. J Androl 33: 735–739. doi: 10.2164/jandrol.111.014225
|
[28] | van Zuijlen PP, Vloemans JF, van Trier AJ, Suijker MH, van Unen E, et al. (2001) Dermal substitution in acute burns and reconstructive surgery: a subjective and objective long-term follow-up. Plast Reconstr Surg 108: 1938–1946. doi: 10.1097/00006534-200112000-00014
|
[29] | Lipp C, Kirker K, Agostinho A, James J, Stewart P (2010) Testing wound dressings using an in vitro wound model. J Wound Care 19: 220–226.
|
[30] | Liuyun J, Yubao L, Chengdong X (2009) Preparation and biological properties of a novel composite scaffold of nano-hydroxyapatite/chitosan/carboxymeth?ylcellulose for bone tissue engineering. J Biomed Sci 16: 65. doi: 10.1186/1423-0127-16-65
|
[31] | Singh NP, McCoy MT, Tice RR, Schneider EL (1988) A simple technique for quantitation of low levels of DNA damage in individual cells. Exp Cell Res 175: 184–191. doi: 10.1016/0014-4827(88)90265-0
|
[32] | Albuquerque-Júnior RLC, Barreto ALS, Pires JA, Reis FP, Ribeiro MAG, et al. (2009) Effect of bovine type-I collagen-based films containing red propolis on dermal wound healing in rodent model. Int J Morphol 27: 1105–1110. doi: 10.4067/s0717-95022009000400025
|
[33] | Hocking AM, Gibran NS (2010) Mesenchymal stem cells: paracrine signaling and differentiation during cutaneous wound repair. Exp Cell Res 316: 2213–2219. doi: 10.1016/j.yexcr.2010.05.009
|
[34] | Wong P, Coulombe PA (2003) Loss of keratin 6 (K6) proteins reveals a function for intermediate filaments during wound repair. J Cell Biol 163: 327–337. doi: 10.1083/jcb.200305032
|
[35] | Khosrotehrani K (2013) Mesenchymal stem cell therapy in skin: why and what for? Exp Dermatol 22: 307–310. doi: 10.1111/exd.12141
|
[36] | Logan A, Frautschy SA, Gonzalez AM, Baird A (1992) A time course for the focal elevation of synthesis of basic fibroblast growth factor and one of its high-affinity receptors (flg) following a localized cortical brain injury. J Neurosci 12: 3828–3837.
|
[37] | Werner S, Grose R (2003) Regulation of wound healing by growth factors and cytokines. Physiol Rev 83: 835–870.
|
[38] | Harding KG, Moore K, Phillips TJ (2005) Wound chronicity and fibroblast senescence - implications for treatment. Int Wound J 2: 364–368. doi: 10.1111/j.1742-4801.2005.00149.x
|
[39] | Motawi TM, Atta HM, Sadik NA, Azzam M (2013) The therapeutic effects of bone marrow-derived mesenchymal stem cells and simvastatin in a rat model of liver fibrosis. Cell Biochem Biophys 13: 9698–9701. doi: 10.1007/s12013-013-9698-1
|
[40] | Zhou S, Salisbury J, Preedy VR, Emery PW (2013) Increased collagen synthesis rate during wound healing in muscle. PLoS One 8: e58324. doi: 10.1371/journal.pone.0058324
|
[41] | Johnson A, DiPietro LA (2013) Apoptosis and angiogenesis: an evolving mechanism for fibrosis. FASEB J 27: 3893–3901. doi: 10.1096/fj.12-214189
|