全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS ONE  2014 

New Therapy of Skin Repair Combining Adipose-Derived Mesenchymal Stem Cells with Sodium Carboxymethylcellulose Scaffold in a Pre-Clinical Rat Model

DOI: 10.1371/journal.pone.0096241

Full-Text   Cite this paper   Add to My Lib

Abstract:

Lesions with great loss of skin and extensive burns are usually treated with heterologous skin grafts, which may lead rejection. Cell therapy with mesenchymal stem cells is arising as a new proposal to accelerate the healing process. We tested a new therapy consisting of sodium carboxymethylcellulose (CMC) as a biomaterial, in combination with adipose-derived stem cells (ADSCs), to treat skin lesions in an in vivo rat model. This biomaterial did not affect membrane viability and induced a small and transient genotoxicity, only at the highest concentration tested (40 mg/mL). In a rat wound model, CMC at 10 mg/mL associated with ADSCs increased the rate of cell proliferation of the granulation tissue and epithelium thickness when compared to untreated lesions (Sham), but did not increase collagen fibers nor alter the overall speed of wound closure. Taken together, the results show that the CMC is capable to allow the growth of ADSCs and is safe for this biological application up to the concentration of 20 mg/mL. These findings suggest that CMC is a promising biomaterial to be used in cell therapy.

References

[1]  Chen M, Przyborowski M, Berthiaume F (2009) Stem cells for skin tissue engineering and wound healing. Crit Rev Biomed Eng 37: 399–421. doi: 10.1615/critrevbiomedeng.v37.i4-5.50
[2]  Simpson CL, Patel DM, Green KJ (2011) Deconstructing the skin: cytoarchitectural determinants of epidermal morphogenesis. Nat Rev Mol Cell Biol 12: 565–580. doi: 10.1038/nrm3175
[3]  Wendt H, Hillmer A, Reimers K, Kuhbier JW, Schafer-Nolte F, et al. (2011) Artificial skin-culturing of different skin cell lines for generating an artificial skin substitute on cross-weaved spider silk fibres. PLoS ONE 6: e21833. doi: 10.1371/journal.pone.0021833
[4]  Neuman MG, Nanau RM, Oruna L, Coto G (2011) In vitro anti-inflammatory effects of hyaluronic acid in ethanol-induced damage in skin cells. J Pharm Pharm Sci 14: 425–437.
[5]  Kirschner N, Houdek P, Fromm M, Moll I, Brandner JM (2010) Tight junctions form a barrier in human epidermis. Eur J Cell Biol 89: 839–842. doi: 10.1016/j.ejcb.2010.07.010
[6]  Balbino CA, Pereira LM, Curi R (2005) Mechanisms involved in wound healing: a revision. Rev Bras Cienc Farm 41: 27–51.
[7]  Balaji S, Keswani SG, Crombleholme TM (2012) The Role of Mesenchymal Stem Cells in the Regenerative Wound Healing Phenotype. Advances in wound care 1: 159–165. doi: 10.1089/wound.2012.0361
[8]  Fuchs E, Horsley V (2008) More than one way to skin. Genes Dev 22: 976–985. doi: 10.1101/gad.1645908
[9]  Zuk PA, Zhu M, Ashjian P, De Ugarte DA, Huang JI, et al. (2002) Human adipose tissue is a source of multipotent stem cells. Mol Biol Cell 13: 4279–4295. doi: 10.1091/mbc.e02-02-0105
[10]  Zuk PA, Zhu M, Mizuno H, Huang J, Futrell JW, et al. (2001) Multilineage cells from human adipose tissue: implications for cell-based therapies. Tissue Eng 7: 211–228. doi: 10.1089/107632701300062859
[11]  Sterodimas A, de Faria J, Nicaretta B, Pitanguy I (2009) Tissue engineering with adipose-derived stem cells (ADSCs): current and future applications. J Plast Reconstr Aesthet Surg 63: 1886–1892. doi: 10.1016/j.bjps.2009.10.028
[12]  Peroni D, Scambi I, Pasini A, Lisi V, Bifari F, et al. (2008) Stem molecular signature of adipose-derived stromal cells. Exp Cell Res 314: 603–615. doi: 10.1016/j.yexcr.2007.10.007
[13]  Sudhakar Y, Kuotsu K, Bandyopadhyay AK (2006) Buccal bioadhesive drug delivery–a promising option for orally less efficient drugs. J Control Release 114: 15–40. doi: 10.1016/j.jconrel.2006.04.012
[14]  Shimamura MK, Kamata K, Yao A, Deguchi T (2005) Scattering functions of knotted ring polymers. Phys Rev E Stat Nonlin Soft Matter Phys 72: 041804. doi: 10.1103/physreve.72.041804
[15]  Ramlia NA, Wonga TW (2011) Sodium carboxymethylcellulose scaffolds and their physicochemical effects on partial thickness wound healing. Int J Pharm 403: 73–82. doi: 10.1016/j.ijpharm.2010.10.023
[16]  Meirelles L S, Nardi NB (2009) Methodology, biology and clinical applications of mesenchymal stem cells. Front Biosci 14: 4281–4298. doi: 10.2741/3528
[17]  Phinney DG, Kopen G, Isaacson RL, Prockop DJ (1999) Plastic adherent stromal cells from the bone marrow of commonly used strains of inbred mice: variations in yield, growth, and differentiation. J Cell Biochem 72: 570–585. doi: 10.1002/(sici)1097-4644(19990315)72:4<570::aid-jcb12>3.0.co;2-w
[18]  Gutiérrez-Fernández M, Rodríguez-Frutos B, Ramos-Cejudo J, Vallejo-Cremades TM, Fuentes B, et al. (2013) Effects of intravenous administration of allogenic bone marrow- and adipose tissue-derived mesenchymal stem cells on functional recovery and brain repair markers in experimental ischemic stroke. Stem Cell Res Ther. 4: 11. doi: 10.1186/scrt159
[19]  Speit G, Hartmann A (1999) The comet assay (single-cell gel test). A sensitive genotoxicity test for the detection of DNA damage and repair. Methods Mol Biol 113: 203–212. doi: 10.1385/1-59259-675-4:203
[20]  Tice RR, Strauss GH (1995) The single cell gel electrophoresis/comet assay: a potential tool for detecting radiation-induced DNA damage in humans. Stem Cells 13: 207–214.
[21]  Nadin SB, Vargas-Roig LM, Ciocca DR (2001) A silver staining method for single-cell gel assay. J Histochem Cytochem 49: 1183–1186. doi: 10.1177/002215540104900912
[22]  Hartmann A, Speit G (1997) The contribution of cytotoxicity to DNA-effects in the single cell gel test (comet assay). Toxicology Letters 90: 183–188. doi: 10.1016/s0378-4274(96)03847-7
[23]  Thomas P, Holland N, Bolognesi C, Kirsch-Volders M, Bonassi S, et al. (2009) Buccal micronucleus cytome assay. Nat Protoc 4: 825–837. doi: 10.1038/nprot.2009.53
[24]  Fenech M (2000) The in vitro micronucleus technique. Mutat Res. 455: 81–95. doi: 10.1016/s0027-5107(00)00065-8
[25]  Kim CH, Lee JH, Won JH, Cho MK (2011) Mesenchymal stem cells improve wound healing in vivo via early activation of matrix metalloproteinase-9 and vascular endothelial growth factor. J Korean Med Sci 26: 726–733. doi: 10.3346/jkms.2011.26.6.726
[26]  Xavier LL, Viola GG, Ferraz AC, Da Cunha C, Deonizio JM, et al. (2005) A simple and fast densitometric method for the analysis of tyrosine hydroxylase immunoreactivity in the substantia nigra pars compacta and in the ventral tegmental area. Brain Res Brain Res Protoc 16: 58–64. doi: 10.1016/j.brainresprot.2005.10.002
[27]  de Souza DB, Silva D, Cortez CM, Costa WS, Sampaio FJ (2012) Effects of chronic stress on penile corpus cavernosum of rats. J Androl 33: 735–739. doi: 10.2164/jandrol.111.014225
[28]  van Zuijlen PP, Vloemans JF, van Trier AJ, Suijker MH, van Unen E, et al. (2001) Dermal substitution in acute burns and reconstructive surgery: a subjective and objective long-term follow-up. Plast Reconstr Surg 108: 1938–1946. doi: 10.1097/00006534-200112000-00014
[29]  Lipp C, Kirker K, Agostinho A, James J, Stewart P (2010) Testing wound dressings using an in vitro wound model. J Wound Care 19: 220–226.
[30]  Liuyun J, Yubao L, Chengdong X (2009) Preparation and biological properties of a novel composite scaffold of nano-hydroxyapatite/chitosan/carboxymeth?ylcellulose for bone tissue engineering. J Biomed Sci 16: 65. doi: 10.1186/1423-0127-16-65
[31]  Singh NP, McCoy MT, Tice RR, Schneider EL (1988) A simple technique for quantitation of low levels of DNA damage in individual cells. Exp Cell Res 175: 184–191. doi: 10.1016/0014-4827(88)90265-0
[32]  Albuquerque-Júnior RLC, Barreto ALS, Pires JA, Reis FP, Ribeiro MAG, et al. (2009) Effect of bovine type-I collagen-based films containing red propolis on dermal wound healing in rodent model. Int J Morphol 27: 1105–1110. doi: 10.4067/s0717-95022009000400025
[33]  Hocking AM, Gibran NS (2010) Mesenchymal stem cells: paracrine signaling and differentiation during cutaneous wound repair. Exp Cell Res 316: 2213–2219. doi: 10.1016/j.yexcr.2010.05.009
[34]  Wong P, Coulombe PA (2003) Loss of keratin 6 (K6) proteins reveals a function for intermediate filaments during wound repair. J Cell Biol 163: 327–337. doi: 10.1083/jcb.200305032
[35]  Khosrotehrani K (2013) Mesenchymal stem cell therapy in skin: why and what for? Exp Dermatol 22: 307–310. doi: 10.1111/exd.12141
[36]  Logan A, Frautschy SA, Gonzalez AM, Baird A (1992) A time course for the focal elevation of synthesis of basic fibroblast growth factor and one of its high-affinity receptors (flg) following a localized cortical brain injury. J Neurosci 12: 3828–3837.
[37]  Werner S, Grose R (2003) Regulation of wound healing by growth factors and cytokines. Physiol Rev 83: 835–870.
[38]  Harding KG, Moore K, Phillips TJ (2005) Wound chronicity and fibroblast senescence - implications for treatment. Int Wound J 2: 364–368. doi: 10.1111/j.1742-4801.2005.00149.x
[39]  Motawi TM, Atta HM, Sadik NA, Azzam M (2013) The therapeutic effects of bone marrow-derived mesenchymal stem cells and simvastatin in a rat model of liver fibrosis. Cell Biochem Biophys 13: 9698–9701. doi: 10.1007/s12013-013-9698-1
[40]  Zhou S, Salisbury J, Preedy VR, Emery PW (2013) Increased collagen synthesis rate during wound healing in muscle. PLoS One 8: e58324. doi: 10.1371/journal.pone.0058324
[41]  Johnson A, DiPietro LA (2013) Apoptosis and angiogenesis: an evolving mechanism for fibrosis. FASEB J 27: 3893–3901. doi: 10.1096/fj.12-214189

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133