全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS ONE  2014 

A Role of Rab29 in the Integrity of the Trans-Golgi Network and Retrograde Trafficking of Mannose-6-Phosphate Receptor

DOI: 10.1371/journal.pone.0096242

Full-Text   Cite this paper   Add to My Lib

Abstract:

Rab29 (also referred as Rab7L1) is a novel Rab protein, and is recently demonstrated to regulate phagocytosis and traffic from the Golgi to the lysosome. However, its roles in membrane trafficking have not been investigated extensively. Our results in this study revealed that Rab29 is associated with the trans-Golgi network (TGN), and is essential for maintaining the integrity of the TGN, because inhibition of the activity of Rab29 or depletion of Rab29 resulted in fragmentation of the TGN marked by TGN46. Expression of the dominant negative form Rab29T21N or shRNA-Rab29 also altered the distribution of mannose-6-phosphate receptor (M6PR), and interrupted the retrograde trafficking of M6PR through monitoring the endocytosis of CD8-tagged calcium dependent M6PR (cdM6PR) or calcium independent M6PR (ciM6PR), but without significant effects on the anterograde trafficking of vesicular stomatitis virus G protein (VSV-G). Our results suggest that Rab29 is essential for the integrity of the TGN and participates in the retrograde trafficking of M6PRs.

References

[1]  Braulke T, Bonifacino JS (2009) Sorting of lysosomal proteins. Biochim Biophys Acta 1793: 605–614. doi: 10.1016/j.bbamcr.2008.10.016
[2]  Le Borgne R, Hoflack B (1998) Protein transport from the secretory to the endocytic pathway in mammalian cells. Biochim Biophys Acta 1404: 195–209. doi: 10.1016/s0167-4889(98)00057-3
[3]  Schultz ML, Tecedor L, Chang M, Davidson BL (2011) Clarifying lysosomal storage diseases. Trends Neurosci 34: 401–410. doi: 10.1016/j.tins.2011.05.006
[4]  Gieselmann V (1995) Lysosomal storage diseases. Biochim Biophys Acta 1270: 103–136. doi: 10.1016/0925-4439(94)00075-2
[5]  Caster AH, Sztul E, Kahn RA (2013) A role for cargo in Arf-dependent adaptor recruitment. J Biol Chem 288: 14788–14804. doi: 10.1074/jbc.m113.453621
[6]  Hinners I, Tooze SA (2003) Changing directions: clathrin-mediated transport between the Golgi and endosomes. J Cell Sci 116: 763–771. doi: 10.1242/jcs.00270
[7]  Doray B, Ghosh P, Griffith J, Geuze HJ, Kornfeld S (2002) Cooperation of GGAs and AP-1 in packaging MPRs at the trans-Golgi network. Science 297: 1700–1703. doi: 10.1126/science.1075327
[8]  Pfeffer SR (2009) Multiple routes of protein transport from endosomes to the trans Golgi network. FEBS Lett 583: 3811–3816. doi: 10.1016/j.febslet.2009.10.075
[9]  Seaman MN (2004) Cargo-selective endosomal sorting for retrieval to the Golgi requires retromer. J Cell Biol 165: 111–122. doi: 10.1083/jcb.200312034
[10]  Arighi CN, Hartnell LM, Aguilar RC, Haft CR, Bonifacino JS (2004) Role of the mammalian retromer in sorting of the cation-independent mannose 6-phosphate receptor. J Cell Biol 165: 123–133. doi: 10.1083/jcb.200312055
[11]  Diaz E, Pfeffer SR (1998) TIP47: a cargo selection device for mannose 6-phosphate receptor trafficking. Cell 93: 433–443. doi: 10.1016/s0092-8674(00)81171-x
[12]  Aivazian D, Serrano RL, Pfeffer S (2006) TIP47 is a key effector for Rab9 localization. J Cell Biol 173: 917–926. doi: 10.1083/jcb.200510010
[13]  Reddy JV, Burguete AS, Sridevi K, Ganley IG, Nottingham RM, et al. (2006) A functional role for the GCC185 golgin in mannose 6-phosphate receptor recycling. Mol Biol Cell 17: 4353–4363. doi: 10.1091/mbc.e06-02-0153
[14]  Hayes GL, Brown FC, Haas AK, Nottingham RM, Barr FA, et al. (2009) Multiple Rab GTPase binding sites in GCC185 suggest a model for vesicle tethering at the trans-Golgi. Mol Biol Cell 20: 209–217. doi: 10.1091/mbc.e08-07-0740
[15]  Brown FC, Schindelhaim CH, Pfeffer SR (2011) GCC185 plays independent roles in Golgi structure maintenance and AP-1-mediated vesicle tethering. J Cell Biol 194: 779–787. doi: 10.1083/jcb.201104019
[16]  Rodriguez-Gabin AG, Ortiz E, Demoliner K, Si Q, Almazan G, et al. (2010) Interaction of Rab31 and OCRL-1 in oligodendrocytes: its role in transport of mannose 6-phosphate receptors. J Neurosci Res 88: 589–604. doi: 10.1002/jnr.22236
[17]  Progida C, Cogli L, Piro F, De Luca A, Bakke O, et al. (2010) Rab7b controls trafficking from endosomes to the TGN. J Cell Sci 123: 1480–1491. doi: 10.1242/jcs.051474
[18]  Chen L, Hu J, Yun Y, Wang T (2010) Rab36 regulates the spatial distribution of late endosomes and lysosomes through a similar mechanism to Rab34. Mol Membr Biol 27: 24–31. doi: 10.3109/09687680903417470
[19]  Rodriguez-Gabin AG, Yin X, Si Q, Larocca JN (2009) Transport of mannose-6-phosphate receptors from the trans-Golgi network to endosomes requires Rab31. Exp Cell Res 315: 2215–2230. doi: 10.1016/j.yexcr.2009.03.020
[20]  Ng EL, Wang Y, Tang BL (2007) Rab22B's role in trans-Golgi network membrane dynamics. Biochem Biophys Res Commun 361: 751–757. doi: 10.1016/j.bbrc.2007.07.076
[21]  Wang T, Hong W (2002) Interorganellar regulation of lysosome positioning by the Golgi apparatus through Rab34 interaction with Rab-interacting lysosomal protein. Mol Biol Cell 13: 4317–4332. doi: 10.1091/mbc.e02-05-0280
[22]  Pfeffer SR (2013) Rab GTPase regulation of membrane identity. Curr Opin Cell Biol.
[23]  Markgraf DF, Peplowska K, Ungermann C (2007) Rab cascades and tethering factors in the endomembrane system. FEBS Lett 581: 2125–2130. doi: 10.1016/j.febslet.2007.01.090
[24]  Spano S, Liu X, Galan JE (2011) Proteolytic targeting of Rab29 by an effector protein distinguishes the intracellular compartments of human-adapted and broad-host Salmonella. Proc Natl Acad Sci U S A 108: 18418–18423. doi: 10.1073/pnas.1111959108
[25]  MacLeod DA, Rhinn H, Kuwahara T, Zolin A, Di Paolo G, et al. (2013) RAB7L1 interacts with LRRK2 to modify intraneuronal protein sorting and Parkinson's disease risk. Neuron 77: 425–439. doi: 10.1016/j.neuron.2012.11.033
[26]  Wang T, Hong W (2005) Assay and functional properties of Rab34 interaction with RILP in lysosome morphogenesis. Methods Enzymol 403: 675–687. doi: 10.1016/s0076-6879(05)03058-2
[27]  Zhang T, Hong W (2001) Ykt6 forms a SNARE complex with syntaxin 5, GS28, and Bet1 and participates in a late stage in endoplasmic reticulum-Golgi transport. J Biol Chem 276: 27480–27487. doi: 10.1074/jbc.m102786200
[28]  Lieu ZZ, Derby MC, Teasdale RD, Hart C, Gunn P, et al. (2007) The golgin GCC88 is required for efficient retrograde transport of cargo from the early endosomes to the trans-Golgi network. Mol Biol Cell 18: 4979–4991. doi: 10.1091/mbc.e07-06-0622
[29]  Wasmeier C, Romao M, Plowright L, Bennett DC, Raposo G, et al. (2006) Rab38 and Rab32 control post-Golgi trafficking of melanogenic enzymes. J Cell Biol 175: 271–281. doi: 10.1083/jcb.200606050
[30]  van Ijzendoorn SC, Mostov KE, Hoekstra D (2003) Role of rab proteins in epithelial membrane traffic. Int Rev Cytol 232: 59–88. doi: 10.1016/s0074-7696(03)32002-9
[31]  Altan-Bonnet N, Sougrat R, Lippincott-Schwartz J (2004) Molecular basis for Golgi maintenance and biogenesis. Curr Opin Cell Biol 16: 364–372. doi: 10.1016/j.ceb.2004.06.011
[32]  Lippincott-Schwartz J, Cole N, Presley J (1998) Unravelling Golgi membrane traffic with green fluorescent protein chimeras. Trends Cell Biol 8: 16–20. doi: 10.1016/s0962-8924(97)01199-9
[33]  Vieira OV, Verkade P, Manninen A, Simons K (2005) FAPP2 is involved in the transport of apical cargo in polarized MDCK cells. J Cell Biol 170: 521–526. doi: 10.1083/jcb.200503078
[34]  McKenzie JE, Raisley B, Zhou X, Naslavsky N, Taguchi T, et al. (2012) Retromer guides STxB and CD8-M6PR from early to recycling endosomes, EHD1 guides STxB from recycling endosome to Golgi. Traffic 13: 1140–1159. doi: 10.1111/j.1600-0854.2012.01374.x
[35]  Johannes L, Popoff V (2008) Tracing the retrograde route in protein trafficking. Cell 135: 1175–1187. doi: 10.1016/j.cell.2008.12.009
[36]  Bonifacino JS, Rojas R (2006) Retrograde transport from endosomes to the trans-Golgi network. Nat Rev Mol Cell Biol 7: 568–579. doi: 10.1038/nrm1985

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133