MicroRNAs (miRNAs) regulate many aspects of cellular function and their deregulation has been implicated in heart disease. MiRNA-30c is differentially expressed in the heart during the progression towards heart failure and in vitro studies hint to its importance in cellular physiology. As little is known about the in vivo function of miRNA-30c in the heart, we generated transgenic mice that specifically overexpress miRNA-30c in cardiomyocytes. We show that these mice display no abnormalities until about 6 weeks of age, but subsequently develop a severely dilated cardiomyopathy. Gene expression analysis of the miRNA-30c transgenic hearts before onset of the phenotype indicated disturbed mitochondrial function. This was further evident by the downregulation of mitochondrial oxidative phosphorylation (OXPHOS) complexes III and IV at the protein level. Taken together these data indicate impaired mitochondrial function due to OXPHOS protein depletion as a potential cause for the observed dilated cardiomyopathic phenotype in miRNA-30c transgenic mice. We thus establish an in vivo role for miRNA-30c in cardiac physiology, particularly in mitochondrial function.
References
[1]
Ambros V (2004) The functions of animal microRNAs. Nature 431: 350–355 10.1038/nature02871 doi:10.1038/nature02871.
[2]
Dai Y, Khaidakov M, Wang X, Ding Z, Su W, et al. (2013) MicroRNAs Involved in the Regulation of Postischemic Cardiac Fibrosis. Hypertension 61: 751–756 doi:10.1161/HYPERTENSIONAHA.111.00654.
[3]
Lee R, Feinbaum R, Ambros V (2004) A short history of a short RNA. Cell 116: S89–92, 1. doi:10.1016/S0092-8674(04)00035-2.
[4]
Tijsen AJ, Pinto YM, Creemers EE (2012) Non-cardiomyocyte microRNAs in heart failure. Cardiovasc Res 93: 573–582 doi:10.1093/cvr/cvr344.
[5]
Pasquinelli AE (2012) MicroRNAs and their targets: recognition, regulation and an emerging reciprocal relationship. Nat Rev Genet 13: 271–282 doi:10.1038/nrg3162.
[6]
van Rooij E, Sutherland LB, Thatcher JE, DiMaio JM, Naseem RH, et al. (2008) Dysregulation of microRNAs after myocardial infarction reveals a role of miR-29 in cardiac fibrosis. Proc Natl Acad Sci U S A 105: 13027–13032 doi:10.1073/pnas.0805038105.
[7]
Matkovich SJ, Wang W, Tu Y, Eschenbacher WH, Dorn LE, et al. (2010) MicroRNA-133a protects against myocardial fibrosis and modulates electrical repolarization without affecting hypertrophy in pressure-overloaded adult hearts. Circ Res 106 (1): 166–175 doi: 10.1161/CIRCRESAHA.109.202176.
[8]
Boon RA, Iekushi K, Lechner S, Seeger T, Fischer A, et al. (2013) MicroRNA-34a regulates cardiac ageing and function. Nature 495: 107–110 doi:10.1038/nature11919.
[9]
el Azzouzi H, Leptidis S, Dirkx E, Hoeks J, van Bree B, et al. (2013) The hypoxia-inducible microRNA cluster miR-199a~214 targets myocardial PPARδ and impairs mitochondrial fatty acid oxidation. Cell Metab 18(3): 341–54 doi: 10.1016/j.cmet.2013.08.009.
[10]
Zhang Y, Yang L, Gao YF, Fan ZM, Cai XY, et al. (2013) MicroRNA-106b induces mitochondrial dysfunction and insulin resistance in C2C12 myotubes by targeting mitofusin-2. Mol Cell Endocrinol 381(1–2): 230–40 doi: 10.1016/j.mce.2013.08.004.
[11]
Das S, Ferlito M, Kent OA, Fox-Talbot K, Wang R, et al. (2012) Nuclear miRNA regulates the mitochondrial genome in the heart Circ Res. 110: 1596–603 doi: 10.1161/CIRCRESAHA.112.267732.
[12]
Duisters RF, Tijsen AJ, Schroen B, Leenders JJ, Lentink V, et al. (2009) miR-133 and miR-30 regulate connective tissue growth factor: implications for a role of microRNAs in myocardial matrix remodeling. Circ Res 104: 170–8, 6p. doi:10.1161/CIRCRESAHA.108.182535.
[13]
Jentzsch C, Leierseder S, Loyer X, Flohrschutz I, Sassi Y, et al. (2012) A phenotypic screen to identify hypertrophy-modulating microRNAs in primary cardiomyocytes. J Mol Cell Cardiol 52: 13–20 doi:10.1016/j.yjmcc.2011.07.010.
[14]
Abonnenc M, Nabeebaccus AA, Mayr U, Barallobre-Barreiro J, Dong X, et al. (2013) Extracellular Matrix Secretion by Cardiac Fibroblasts: Role of microRNA-29b and microRNA-30c. Circ Res . doi:10.1161/CIRCRESAHA.113.302400.
[15]
Marchand A, Proust C, Morange PE, Lompre AM, Tregouet DA (2012) miR-421 and miR-30c inhibit SERPINE 1 gene expression in human endothelial cells. PLoS One 7: e44532 doi:10.1371/journal.pone.0044532.
[16]
Patel N, Tahara SM, Malik P, Kalra VK (2011) Involvement of miR-30c and miR-301a in immediate induction of plasminogen activator inhibitor-1 by placental growth factor in human pulmonary endothelial cells. Biochem J 434: 473–482 doi:10.1042/BJ20101585.
[17]
Li J, Donath S, Li Y, Qin D, Prabhakar BS, Li P (2010) miR-30 regulates mitochondrial fission through targeting p53 and the dynamin-related protein-1 pathway. PLoS Genet 6: e1000795 doi:10.1371/journal.pgen.1000795.
[18]
Zhou H, Xu X, Xun Q, Yu D, Ling J, et al. (2012) microRNA-30c negatively regulates endometrial cancer cells by targeting metastasis-associated gene-1. Oncol Rep 27: 807–812 doi:10.3892/or.2011.1574.
[19]
Bridge G, Monteiro R, Henderson S, Emuss V, Lagos D, et al. (2012) The microRNA-30 family targets DLL4 to modulate endothelial cell behavior during angiogenesis. Blood 120: 5063–5072 blood-2012-04-423004 doi:10.1182/blood-2012-04-423004.
[20]
Pan W, Zhong Y, Cheng C, Liu B, Wang L, et al. (2013) MiR-30-regulated autophagy mediates angiotensin II-induced myocardial hypertrophy. PLoS One 8: e53950 doi:10.1371/journal.pone.0053950.
[21]
Soh J, Iqbal J, Queiroz J, Fernandez-Hernando C, Hussain MM (2013) MicroRNA-30c reduces hyperlipidemia and atherosclerosis in mice by decreasing lipid synthesis and lipoprotein secretion. Nat Med 19: 892–900 doi:10.1038/nm.3200.
[22]
Sayed D, Hong C, Chen IY, Lypowy J, Abdellatif M (2007) MicroRNAs play an essential role in the development of cardiac hypertrophy. Circ Res 100: 416–424 doi:10.1161/01.RES.0000257913.42552.23.
[23]
Leptidis S, El AH, Lok SI, de WR, Olieslagers S, et al. (2013) A deep sequencing approach to uncover the miRNOME in the human heart. PLoS One 8: e57800 doi:10.1371/journal.pone.0057800.
[24]
Thum T, Galuppo P, Wolf C, Fiedler J, Kneitz S, et al. (2007) MicroRNAs in the human heart: a clue to fetal gene reprogramming in heart failure. Circulation 116: 258–267 doi:10.1161/CIRCULATIONAHA.107.687947.
[25]
Ruijter JM, Ramakers C, Hoogaars WM, Karlen Y, Bakker O, et al. (2009) Amplification efficiency: linking baseline and bias in the analysis of quantitative PCR data. Nucleic Acids Res 37: e45 doi:10.1093/nar/gkp045.
[26]
Ruijter JM, Pfaffl MW, Zhao S, Spiess AN, Boggy G, et al. (2013) Evaluation of qPCR curve analysis methods for reliable biomarker discovery: bias, resolution, precision, and implications. Methods 59: 32–46 S1046-2023(12). doi:10.1016/j.ymeth.2012.08.011.
[27]
De Boer BA, van den Berg G, Soufan AT, de Boer PA, Hagoort J, et al. (2012) Measurement and 3D-visualization of cell-cycle length using double labelling with two thymidine analogues applied in early heart development. PLoS One 7: e47719 doi:10.1371/journal.pone.0047719.
[28]
Huang dW, Sherman BT, Lempicki RA (2009) Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc 4: 44–57 doi:10.1038/nprot.2008.211.
[29]
Huang dW, Sherman BT, Lempicki RA (2009) Bioinformatics enrichment tools: paths toward the comprehensive functional analysis of large gene lists. Nucleic Acids Res 37: 1–13 doi:10.1093/nar/gkn923.
[30]
Houtkooper RH, Argmann C, Houten SM, Canto C, Jeninga EH, et al. (2011) The metabolic footprint of aging in mice. Sci Rep 1: 134 doi:10.1038/srep00134.
[31]
Ventura FV, Ruiter J, Ijlst L, de Almeida IT, Wanders RJ (2005) Differential inhibitory effect of long-chain acyl-CoA esters on succinate and glutamate transport into rat liver mitochondria and its possible implications for long-chain fatty acid oxidation defects. Mol Genet Metab 86: 344–352 S1096-7192. doi:10.1016/j.ymgme.2005.07.030.
[32]
Houtkooper RH, Mouchiroud L, Ryu D, Moullan N, Katsyuba E, et al. (2013) Mitonuclear protein imbalance as a conserved longevity mechanism. Nature 497: 451–457 doi:10.1038/nature12188.
[33]
Stanley WC, Recchia FA, Lopaschuk GD (2005) Myocardial substrate metabolism in the normal and failing heart. Physiol Rev 85: 1093–1129 doi:10.1152/physrev.00006.2004.
[34]
Chen L, Knowlton AA (2011) Mitochondrial dynamics in heart failure. Congest Heart Fail 17: 257–261. doi: 10.1111/j.1751-7133.2011.00255.x
[35]
Casademont J, Miro O (2002) Electron transport chain defects in heart failure. Heart Fail Rev 7: 131–139. doi: 10.1023/a:1015372407647
[36]
Marin-Garcia J, Goldenthal MJ (2002) Understanding the impact of mitochondrial defects in cardiovascular disease: a review. J Card Fail 8: 347–361. doi: 10.1054/jcaf.2002.127774
[37]
Scarpulla RC (2008) Transcriptional paradigms in mammalian mitochondrial biogenesis and function. Physiol Rev 88: 611–638 doi:10.1152/physrev.00025.2007.
[38]
Rimbaud S, Garnier A, Ventura-Clapier R (2009) Mitochondrial biogenesis in cardiac pathophysiology. Pharmacol Rep 61: 131–138. doi: 10.1016/s1734-1140(09)70015-5
[39]
Cannino G, Di Liegro CM, Rinaldi AM (2007) Nuclear-mitochondrial interaction. Mitochondrion 7: 359–366 S1567–7249. doi:10.1016/j.mito.2007.07.001.
[40]
Li H, Li S, Yu B, Liu S (2012) Expression of miR-133 and miR-30 in chronic atrial fibrillation in canines. Mol Med Rep 5: 1457–1460 doi:10.3892/mmr.2012.831.
[41]
Creemers EE, Pinto YM (2011) Molecular mechanisms that control interstitial fibrosis in the pressure-overloaded heart. Cardiovasc Res 89: 265–272 doi:10.1093/cvr/cvq308.
[42]
Matkovich SJ, Van Booven DJ, Eschenbacher WH, Dorn GW (2011) RISC RNA sequencing for context-specific identification of in vivo microRNA targets. Circ Res 108: 18–26 doi:10.1161/CIRCRESAHA.110.233528.