全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS ONE  2014 

Inhibition of U4 snRNA in Human Cells Causes the Stable Retention of Polyadenylated Pre-mRNA in the Nucleus

DOI: 10.1371/journal.pone.0096174

Full-Text   Cite this paper   Add to My Lib

Abstract:

Most human pre-mRNAs contain introns that are removed by splicing. Such a complex process needs strict control and regulation in order to prevent the expression of aberrant or unprocessed transcripts. To analyse the fate of pre-mRNAs that cannot be spliced, we inhibited splicing using an anti-sense morpholino (AMO) against U4 snRNA. As a consequence, splicing of several selected transcripts was strongly inhibited. This was accompanied by the formation of enlarged nuclear speckles containing polyadenylated RNA, splicing factors and the nuclear poly(A) binding protein. Consistently, more polyadenylated pre-mRNA could be isolated from nucleoplasmic as well as chromatin-associated RNA fractions following U4 inhibition. Further analysis demonstrated that accumulated pre-mRNAs were stable in the nucleus and that nuclear RNA degradation factors did not re-localise to nuclear speckles following splicing inhibition. The accumulation of pre-mRNA and the formation of enlarged speckles were sensitive to depletion of the 3′ end processing factor, CPSF73, suggesting a requirement for poly(A) site processing in this mechanism. Finally, we provide evidence that the pre-mRNAs produced following U4 snRNA inhibition remain competent for splicing, perhaps providing a biological explanation for their stability. These data further characterise processes ensuring the nuclear retention of pre-mRNA that cannot be spliced and suggest that, in some cases, unspliced transcripts can complete splicing sometime after their initial synthesis.

References

[1]  Wahl MC, Will CL, Luhrmann R (2009) The spliceosome: design principles of a dynamic RNP machine. Cell 136: 701–718. doi: 10.1016/j.cell.2009.02.009
[2]  Robberson BL, Cote GJ, Berget SM (1990) Exon definition may facilitate splice site selection in RNAs with multiple exons. Mol Cell Biol 10: 84–94.
[3]  Villarreal LP, White RT (1983) A splice junction deletion deficient in the transport of RNA does not polyadenylate nuclear RNA. Mol Cell Biol 3: 1381–1388.
[4]  Niwa M, Rose SD, Berget SM (1990) In vitro polyadenylation is stimulated by the presence of an upstream intron. Genes Dev 4: 1552–1559. doi: 10.1101/gad.4.9.1552
[5]  Berget SM (1995) Exon recognition in vertebrate splicing. J Biol Chem 270: 2411–2414.
[6]  Pabis M, Neufeld N, Steiner MC, Bojic T, Shav-Tal Y, et al. (2013) The nuclear cap-binding complex interacts with the U4/U6.U5 tri-snRNP and promotes spliceosome assembly in mammalian cells. RNA 19: 1054–1063. doi: 10.1261/rna.037069.112
[7]  McCracken S, Fong N, Yankulov K, Ballantyne S, Pan G, et al. (1997) The C-terminal domain of RNA polymerase II couples mRNA processing to transcription. Nature 385: 357–361. doi: 10.1038/385357a0
[8]  Carrillo Oesterreich F, Preibisch S, Neugebauer KM (2010) Global analysis of nascent RNA reveals transcriptional pausing in terminal exons. Mol Cell 40: 571–581. doi: 10.1016/j.molcel.2010.11.004
[9]  Tilgner H, Knowles DG, Johnson R, Davis CA, Chakrabortty S, et al. (2012) Deep sequencing of subcellular RNA fractions shows splicing to be predominantly co-transcriptional in the human genome but inefficient for lncRNAs. Genome Res 22: 1616–1625. doi: 10.1101/gr.134445.111
[10]  Khodor YL, Menet JS, Tolan M, Rosbash M (2012) Cotranscriptional splicing efficiency differs dramatically between Drosophila and mouse. RNA 18: 2174–2186. doi: 10.1261/rna.034090.112
[11]  Khodor YL, Rodriguez J, Abruzzi KC, Tang CH, Marr MT 2nd, et al. (2011) Nascent-seq indicates widespread cotranscriptional pre-mRNA splicing in Drosophila. Genes Dev 25: 2502–2512. doi: 10.1101/gad.178962.111
[12]  Pandya-Jones A, Black DL (2009) Co-transcriptional splicing of constitutive and alternative exons. RNA 15: 1896–1908. doi: 10.1261/rna.1714509
[13]  Wetterberg I, Bauren G, Wieslander L (1996) The intranuclear site of excision of each intron in Balbiani ring 3 pre-mRNA is influenced by the time remaining to transcription termination and different excision efficiencies for the various introns. RNA 2: 641–651.
[14]  Bhatt DM, Pandya-Jones A, Tong AJ, Barozzi I, Lissner MM, et al. (2012) Transcript dynamics of proinflammatory genes revealed by sequence analysis of subcellular RNA fractions. Cell 150: 279–290. doi: 10.1016/j.cell.2012.05.043
[15]  Davidson L, West S (2013) Splicing-coupled 3′ end formation requires a terminal splice acceptor site, but not intron excision. Nucleic Acids Res 41: 7101–7114. doi: 10.1093/nar/gkt446
[16]  Girard C, Will CL, Peng J, Makarov EM, Kastner B, et al. (2012) Post-transcriptional spliceosomes are retained in nuclear speckles until splicing completion. Nat Commun 3: 994. doi: 10.1038/ncomms1998
[17]  Spector DL, Lamond AI (2011) Nuclear speckles. Cold Spring Harb Perspect Biol 3..
[18]  Lamond AI, Spector DL (2003) Nuclear speckles: a model for nuclear organelles. Nat Rev Mol Cell Biol 4: 605–612. doi: 10.1038/nrm1172
[19]  Xie SQ, Martin S, Guillot PV, Bentley DL, Pombo A (2006) Splicing speckles are not reservoirs of RNA polymerase II, but contain an inactive form, phosphorylated on serine2 residues of the C-terminal domain. Mol Biol Cell 17: 1723–1733. doi: 10.1091/mbc.e05-08-0726
[20]  Daguenet E, Baguet A, Degot S, Schmidt U, Alpy F, et al. (2012) Perispeckles are major assembly sites for the exon junction core complex. Mol Biol Cell 23: 1765–1782. doi: 10.1091/mbc.e12-01-0040
[21]  Dias AP, Dufu K, Lei H, Reed R (2010) A role for TREX components in the release of spliced mRNA from nuclear speckle domains. Nat Commun 1: 97. doi: 10.1038/ncomms1103
[22]  Brody Y, Neufeld N, Bieberstein N, Causse SZ, Bohnlein EM, et al. (2011) The in vivo kinetics of RNA polymerase II elongation during co-transcriptional splicing. PLoS Biol 9: e1000573. doi: 10.1371/journal.pbio.1000573
[23]  Martins SB, Rino J, Carvalho T, Carvalho C, Yoshida M, et al. (2011) Spliceosome assembly is coupled to RNA polymerase II dynamics at the 3′ end of human genes. Nat Struct Mol Biol 18: 1115–1123. doi: 10.1038/nsmb.2124
[24]  Kaida D, Motoyoshi H, Tashiro E, Nojima T, Hagiwara M, et al. (2007) Spliceostatin A targets SF3b and inhibits both splicing and nuclear retention of pre-mRNA. Nat Chem Biol 3: 576–583. doi: 10.1038/nchembio.2007.18
[25]  Reed R (2003) Coupling transcription, splicing and mRNA export. Curr Opin Cell Biol 15: 326–331. doi: 10.1016/s0955-0674(03)00048-6
[26]  Wiegand HL, Lu S, Cullen BR (2003) Exon junction complexes mediate the enhancing effect of splicing on mRNA expression. Proc Natl Acad Sci U S A 100: 11327–11332. doi: 10.1073/pnas.1934877100
[27]  Le Hir H, Gatfield D, Izaurralde E, Moore MJ (2001) The exon-exon junction complex provides a binding platform for factors involved in mRNA export and nonsense-mediated mRNA decay. EMBO J 20: 4987–4997. doi: 10.1093/emboj/20.17.4987
[28]  Le Hir H, Izaurralde E, Maquat LE, Moore MJ (2000) The spliceosome deposits multiple proteins 20-24 nucleotides upstream of mRNA exon-exon junctions. EMBO J 19: 6860–6869. doi: 10.1093/emboj/19.24.6860
[29]  Valencia P, Dias AP, Reed R (2008) Splicing promotes rapid and efficient mRNA export in mammalian cells. Proc Natl Acad Sci U S A 105: 3386–3391. doi: 10.1073/pnas.0800250105
[30]  Masuda S, Das R, Cheng H, Hurt E, Dorman N, et al. (2005) Recruitment of the human TREX complex to mRNA during splicing. Genes Dev 19: 1512–1517. doi: 10.1101/gad.1302205
[31]  Bousquet-Antonelli C, Presutti C, Tollervey D (2000) Identification of a regulated pathway for nuclear pre-mRNA turnover. Cell 102: 765–775. doi: 10.1016/s0092-8674(00)00065-9
[32]  Gudipati RK, Xu Z, Lebreton A, Seraphin B, Steinmetz LM, et al.. (2012) Extensive Degradation of RNA Precursors by the Exosome in Wild-Type Cells. Mol Cell.
[33]  Davidson L, Kerr A, West S (2012) Co-transcriptional degradation of aberrant pre-mRNA by Xrn2. EMBO J 31: 2566–2578. doi: 10.1038/emboj.2012.101
[34]  Eberle AB, Hessle V, Helbig R, Dantoft W, Gimber N, et al. (2010) Splice-site mutations cause Rrp6-mediated nuclear retention of the unspliced RNAs and transcriptional down-regulation of the splicing-defective genes. PLoS One 5: e11540. doi: 10.1371/journal.pone.0011540
[35]  de Almeida SF, Garcia-Sacristan A, Custodio N, Carmo-Fonseca M (2010) A link between nuclear RNA surveillance, the human exosome and RNA polymerase II transcriptional termination. Nucleic Acids Res 38: 8015–8026. doi: 10.1093/nar/gkq703
[36]  Kaida D, Berg MG, Younis I, Kasim M, Singh LN, et al. (2010) U1 snRNP protects pre-mRNAs from premature cleavage and polyadenylation. Nature 468: 664–668. doi: 10.1038/nature09479
[37]  Takemura R, Takeiwa T, Taniguchi I, McCloskey A, Ohno M (2011) Multiple factors in the early splicing complex are involved in the nuclear retention of pre-mRNAs in mammalian cells. Genes Cells 16: 1035–1049. doi: 10.1111/j.1365-2443.2011.01548.x
[38]  Bringmann P, Appel B, Rinke J, Reuter R, Theissen H, et al. (1984) Evidence for the existence of snRNAs U4 and U6 in a single ribonucleoprotein complex and for their association by intermolecular base pairing. EMBO J 3: 1357–1363.
[39]  Hashimoto C, Steitz JA (1984) U4 and U6 RNAs coexist in a single small nuclear ribonucleoprotein particle. Nucleic Acids Res 12: 3283–3293. doi: 10.1093/nar/12.7.3283
[40]  Staley JP, Guthrie C (1998) Mechanical devices of the spliceosome: motors, clocks, springs, and things. Cell 92: 315–326. doi: 10.1016/s0092-8674(00)80925-3
[41]  Wersig C, Bindereif A (1990) Conserved domains of human U4 snRNA required for snRNP and spliceosome assembly. Nucleic Acids Res 18: 6223–6229. doi: 10.1093/nar/18.21.6223
[42]  Vankan P, McGuigan C, Mattaj IW (1992) Roles of U4 and U6 snRNAs in the assembly of splicing complexes. EMBO J 11: 335–343.
[43]  Younis I, Dittmar K, Wang W, Foley SW, Berg MG, et al. (2013) Minor introns are embedded molecular switches regulated by highly unstable U6atac snRNA. Elife 2: e00780. doi: 10.7554/elife.00780
[44]  Corrionero A, Minana B, Valcarcel J (2011) Reduced fidelity of branch point recognition and alternative splicing induced by the anti-tumor drug spliceostatin A. Genes Dev 25: 445–459. doi: 10.1101/gad.2014311
[45]  Roybal GA, Jurica MS (2010) Spliceostatin A inhibits spliceosome assembly subsequent to prespliceosome formation. Nucleic Acids Res 38: 6664–6672. doi: 10.1093/nar/gkq494
[46]  Albert BJ, McPherson PA, O'Brien K, Czaicki NL, Destefino V, et al. (2009) Meayamycin inhibits pre-messenger RNA splicing and exhibits picomolar activity against multidrug-resistant cells. Mol Cancer Ther 8: 2308–2318. doi: 10.1158/1535-7163.mct-09-0051
[47]  Kotake Y, Sagane K, Owa T, Mimori-Kiyosue Y, Shimizu H, et al. (2007) Splicing factor SF3b as a target of the antitumor natural product pladienolide. Nat Chem Biol 3: 570–575. doi: 10.1038/nchembio.2007.16
[48]  Wuarin J, Schibler U (1994) Physical isolation of nascent RNA chains transcribed by RNA polymerase II: evidence for cotranscriptional splicing. Mol Cell Biol 14: 7219–7225.
[49]  Dye MJ, Gromak N, Proudfoot NJ (2006) Exon tethering in transcription by RNA polymerase II. Mol Cell 21: 849–859. doi: 10.1016/j.molcel.2006.01.032
[50]  Lubas M, Christensen MS, Kristiansen MS, Domanski M, Falkenby LG, et al. (2011) Interaction profiling identifies the human nuclear exosome targeting complex. Mol Cell 43: 624–637. doi: 10.1016/j.molcel.2011.06.028
[51]  Schmiedeberg L, Skene P, Deaton A, Bird A (2009) A temporal threshold for formaldehyde crosslinking and fixation. PLoS One 4: e4636. doi: 10.1371/journal.pone.0004636
[52]  Schmid M, Poulsen MB, Olszewski P, Pelechano V, Saguez C, et al.. (2012) Rrp6p Controls mRNA Poly(A) Tail Length and Its Decoration with Poly(A) Binding Proteins. Mol Cell.
[53]  Milligan L, Torchet C, Allmang C, Shipman T, Tollervey D (2005) A nuclear surveillance pathway for mRNAs with defective polyadenylation. Mol Cell Biol 25: 9996–10004. doi: 10.1128/mcb.25.22.9996-10004.2005
[54]  Hilleren P, McCarthy T, Rosbash M, Parker R, Jensen TH (2001) Quality control of mRNA 3′-end processing is linked to the nuclear exosome. Nature 413: 538–542. doi: 10.1038/35097110
[55]  Sloan KE, Mattijssen S, Lebaron S, Tollervey D, Pruijn GJ, et al. (2013) Both endonucleolytic and exonucleolytic cleavage mediate ITS1 removal during human ribosomal RNA processing. J Cell Biol 200: 577–588. doi: 10.1083/jcb.201207131
[56]  Kent T, Lapik YR, Pestov DG (2009) The 5′ external transcribed spacer in mouse ribosomal RNA contains two cleavage sites. RNA 15: 14–20. doi: 10.1261/rna.1384709
[57]  West S, Proudfoot NJ, Dye MJ (2008) Molecular dissection of mammalian RNA polymerase II transcriptional termination. Mol Cell 29: 600–610. doi: 10.1016/j.molcel.2007.12.019
[58]  Glaunsinger BA, Lee YJ (2010) How tails define the ending: divergent roles for polyadenylation in RNA stability and gene expression. RNA Biol 7: 13–17. doi: 10.4161/rna.7.1.10255
[59]  Davidson L, Muniz L, West S (2014) 3′ end formation of pre-mRNA and phosphorylation of Ser2 on the RNA polymerase II CTD are reciprocally coupled in human cells. Genes Dev 28: 342–356. doi: 10.1101/gad.231274.113
[60]  Tange TO, Nott A, Moore MJ (2004) The ever-increasing complexities of the exon junction complex. Curr Opin Cell Biol 16: 279–284. doi: 10.1016/j.ceb.2004.03.012
[61]  Le Hir H, Moore MJ, Maquat LE (2000) Pre-mRNA splicing alters mRNP composition: evidence for stable association of proteins at exon-exon junctions. Genes Dev 14: 1098–1108.
[62]  Dye MJ, Proudfoot NJ (1999) Terminal exon definition occurs cotranscriptionally and promotes termination of RNA polymerase II. Mol Cell 3: 371–378. doi: 10.1016/s1097-2765(00)80464-5

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133