We derive the Iterative Confidence Enhancement of Tractography (ICE-T) framework to address the problem of path-length dependency (PLD), the streamline dispersivity confound inherent to probabilistic tractography methods. We show that PLD can arise as a non-linear effect, compounded by tissue complexity, and therefore cannot be handled using linear correction methods. ICE-T is an easy-to-implement framework that acts as a wrapper around most probabilistic streamline tractography methods, iteratively growing the tractography seed regions. Tract networks segmented with ICE-T can subsequently be delineated with a global threshold, even from a single-voxel seed. We investigated ICE-T performance using ex vivo pig-brain datasets where true positives were known via in vivo tracers, and applied the derived ICE-T parameters to a human in vivo dataset. We examined the parameter space of ICE-T: the number of streamlines emitted per voxel, and a threshold applied at each iteration. As few as 20 streamlines per seed-voxel, and a robust range of ICE-T thresholds, were shown to sufficiently segment the desired tract network. Outside this range, the tract network either approximated the complete white-matter compartment (too low threshold) or failed to propagate through complex regions (too high threshold). The parameters were shown to be generalizable across seed regions. With ICE-T, the degree of both near-seed flare due to false positives, and of distal false negatives, are decreased when compared with thresholded probabilistic tractography without ICE-T. Since ICE-T only addresses PLD, the degree of remaining false-positives and false-negatives will consequently be mainly attributable to the particular tractography method employed. Given the benefits offered by ICE-T, we would suggest that future studies consider this or a similar approach when using tractography to provide tract segmentations for tract based analysis, or for brain network analysis.
References
[1]
Johansen-Berg H, Behrens T (2009) Diffusion MRI: From quantitative measurement to in-vivo neuroanatomy. 1st ed. Elsevier.
[2]
Jones DK (2011) Diffusion MRI: Theory, Methods, and Applications. OUP USA.
[3]
Alexander DC (2005) Multiple-Fiber Reconstruction Algorithms for Diffusion MRI. Annals of the New York Academy of Sciences 1064: 113–133 doi:10.1196/annals.1340.018.
[4]
Basser PJ, Mattiello J, LeBihan D (1994) Estimation of the effective self-diffusion tensor from the NMR spin echo. J Magn Reson B 103: 247–254. doi: 10.1006/jmrb.1994.1037
[5]
Tournier J-D, Calamante F, Gadian DG, Connelly A (2004) Direct estimation of the fiber orientation density function from diffusion-weighted MRI data using spherical deconvolution. NeuroImage 23: 1176–1185 doi:10.1016/j.neuroimage.2004.07.037.
[6]
Tuch DS, Reese TG, Wiegell MR, Makris N, Belliveau JW, et al. (2002) High angular resolution diffusion imaging reveals intravoxel white matter fiber heterogeneity. Magn Reson Med 48: 577–582 doi:10.1002/mrm.10268.
[7]
Behrens TEJ, Berg HJ, Jbabdi S, Rushworth MFS, Woolrich MW (2007) Probabilistic diffusion tractography with multiple fibre orientations: What can we gain? NeuroImage 34: 144–155 doi:10.1016/j.neuroimage.2006.09.018.
[8]
Parker GJM, Alexander DC (2005) Probabilistic anatomical connectivity derived from the microscopic persistent angular structure of cerebral tissue. Philosophical Transactions of the Royal Society B: Biological Sciences 360: 893–902 doi:10.1098/rstb.2005.1639.
[9]
Parker GJM, Haroon HA, Wheeler-Kingshott CAM (2003) A framework for a streamline-based probabilistic index of connectivity (PICo) using a structural interpretation of MRI diffusion measurements. J Magn Reson Imaging 18: 242–254 doi:10.1002/jmri.10350.
[10]
Hyam JA, Owen SLF, Kringelbach ML, Jenkinson N, Stein JF, et al. (2012) Contrasting Connectivity of the Ventralis Intermedius and Ventralis Oralis Posterior Nuclei of the Motor Thalamus Demonstrated by Probabilistic Tractography. Neurosurgery 70: 162–169 doi:10.1227/NEU.0b013e3182262c9a.
[11]
Mars RB, Jbabdi S, Sallet J, O'Reilly JX, Croxson PL, et al. (2011) Diffusion-Weighted Imaging Tractography-Based Parcellation of the Human Parietal Cortex and Comparison with Human and Macaque Resting-State Functional Connectivity. Journal of Neuroscience 31: 4087–4100 doi:10.1523/JNEUROSCI.5102-10.2011.
[12]
Jonasson L, Bresson X, Hagmann P, Cuisenaire O, Meuli R, et al. (2005) White matter fiber tract segmentation in DT-MRI using geometric flows. Medical Image Analysis 9: 223–236 doi:10.1016/j.media.2004.07.004.
[13]
Jones DK (2010) Challenges and limitations of quantifying brain connectivity in vivo with diffusion MRI. Imaging in Medicine 2: 341–355 doi:10.2217/iim.10.21.
[14]
Jones DK, Kn?sche TR, Turner R (2013) White matter integrity, fiber count, and other fallacies: The do“s and don”ts of diffusion MRI. NeuroImage 73: 239–254 Available: http://linkinghub.elsevier.com/retrieve/?pii/S1053811912007306.
[15]
Hagmann P, Cammoun L, Gigandet X, Meuli R, Honey CJ, et al. (2008) Mapping the structural core of human cerebral cortex. PLoS Biol 6: e159 doi:10.1371/journal.pbio.0060159.
[16]
Dyrby TB, S?gaard LV, Parker GJ, Alexander DC, Lind NM, et al. (2007) Validation of in vitro probabilistic tractography. NeuroImage 37: 1267–1277 doi:10.1016/j.neuroimage.2007.06.022.
[17]
Anwander A, Tittgemeyer M, Cramon von DY, Friederici AD, Knosche TR (2007) Connectivity-Based Parcellation of Broca's Area. Cereb Cortex 17: 816–825 doi:10.1093/cercor/bhk034.
[18]
Tomassini V, Jbabdi S, Klein JC, Behrens TEJ, Pozzilli C, et al. (2007) Diffusion-weighted imaging tractography-based parcellation of the human lateral premotor cortex identifies dorsal and ventral subregions with anatomical and functional specializations. Journal of Neuroscience 27: 10259–10269 doi:10.1523/JNEUROSCI.2144-07.2007.
[19]
Sherbondy AJ, Dougherty RF, Ben-Shachar M, Napel S, Wandell BA (2008) ConTrack: Finding the most likely pathways between brain regions using diffusion tractography. Journal of Vision 8: 15–15 doi:10.1167/8.9.15.
[20]
Cercignani M, Embleton K, Parker GJM, Bozzali M (2012) Group-averaged anatomical connectivity mapping for improved human white matter pathway visualisation. NMR Biomed 25: 1224–1233 doi:10.1002/nbm.2793.
[21]
Dyrby TB, Baaré WFC, Alexander DC, Jelsing J, Garde E, et al. (2011) An ex vivo imaging pipeline for producing high-quality and high-resolution diffusion-weighted imaging datasets. Human brain mapping 32: 544–563 doi:10.1002/hbm.21043.
[22]
Cook PA, Bai Y, Nedjati-Gilani S, Seunarine KK, Hall MG, et al.. (2006) Camino: Open-source diffusion-MRI reconstruction and processing. Proc. ISMRM, p. 2759.
[23]
Reese TG, Heid O, Weisskoff RM, Wedeen VJ (2003) Reduction of eddy-current-induced distortion in diffusion MRI using a twice-refocused spin echo. Magn Reson Med 49: 177–182 doi:10.1002/mrm.10308.
[24]
Collignon A, Maes F, Delaere D, Vandermeulen D, Suetens P, et al.. (1995) Automated multi-modality image registration based on information theory. In: Bizais Y, Barillot C, Di Paola R, editors.Vol. 3 . pp. 264–274.
[25]
Jezzard P, Balaban RS (1995) Correction for geometric distortion in echo planar images from B0 field variations. Magn Reson Med 34: 65–73. doi: 10.1002/mrm.1910340111
[26]
Leemans A, Jones DK (2009) The B-matrix must be rotated when correcting for subject motion in DTI data. Magn Reson Med 61: 1336–1349 doi:10.1002/mrm.21890.
[27]
Alexander DC, Barker GJ, Arridge SR (2002) Detection and modeling of non-Gaussian apparent diffusion coefficient profiles in human brain data. Magn Reson Med 48: 331–340 doi:10.1002/mrm.10209.
[28]
Mori S, Crain BJ, Chacko VP, Van Zijl P (1999) Three-dimensional tracking of axonal projections in the brain by magnetic resonance imaging. Ann Neurol 45: 265–269. doi: 10.1002/1531-8249(199902)45:2<265::aid-ana21>3.0.co;2-3
[29]
Liptrot M, Dyrby TB (2010) How Many Streamlines Should I Use? Proc.ISMRM, E-poster 4015
[30]
Morris DM, Embleton KV, Parker GJM (2008) Probabilistic fibre tracking: Differentiation of connections from chance events. NeuroImage 42: 1329–1339 doi:10.1016/j.neuroimage.2008.06.012.
[31]
Mang SC, Logashenko D, Gembris D, Wittum G, Grodd W, et al. (2010) Diffusion simulation-based fiber tracking using time-of-arrival maps: a comparison with standard methods. Magn Reson Mater Phy 23: 391–398 doi:10.1007/s10334-009-0195-x.
[32]
Yushkevich PA, Zhang Hui, Simon TJ, Gee JC (2008) Structure-specific statistical mapping of white matter tracts. NeuroImage 41: 448–461 doi:10.1016/j.neuroimage.2008.01.013.