全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS ONE  2014 

Using Landscape and Bioclimatic Features to Predict the Distribution of Lions, Leopards and Spotted Hyaenas in Tanzania's Ruaha Landscape

DOI: 10.1371/journal.pone.0096261

Full-Text   Cite this paper   Add to My Lib

Abstract:

Tanzania's Ruaha landscape is an international priority area for large carnivores, supporting over 10% of the world's lions and important populations of leopards and spotted hyaenas. However, lack of ecological data on large carnivore distribution and habitat use hinders the development of effective carnivore conservation strategies in this critical landscape. Therefore, the study aimed to (i) identify the most significant ecogeographical variables influencing the potential distribution of lions, leopards and spotted hyaenas across the Ruaha landscape; (ii) identify zones with highest suitability for harbouring those species; and (iii) use species distribution modelling algorithms (SDMs) to define important areas for conservation of large carnivores. Habitat suitability was calculated based on environmental features from georeferenced presence-only carnivore location data. Potential distribution of large carnivores appeared to be strongly influenced by water availability; highly suitable areas were situated close to rivers and experienced above average annual precipitation. Net primary productivity and tree cover also exerted some influence on habitat suitability. All three species showed relatively narrow niche breadth and low tolerance to changes in habitat characteristics. From 21,050 km2 assessed, 8.1% (1,702 km2) emerged as highly suitable for all three large carnivores collectively. Of that area, 95.4% (1,624 km2) was located within 30 km of the Park-village border, raising concerns about human-carnivore conflict. This was of particular concern for spotted hyaenas, as they were located significantly closer to the Park boundary than lions and leopards. This study provides the first map of potential carnivore distribution across the globally important Ruaha landscape, and demonstrates that SDMs can be effective for understanding large carnivore habitat requirements in poorly sampled areas. This approach could have relevance for many other important wildlife areas that only have limited, haphazard presence-only data, but which urgently require strategic conservation planning.

References

[1]  Pitman RT, Swanepoel LH, Ramsay PM (2012) Predictive modelling of leopard predation using contextual Global Positioning System cluster analysis. Journal of Zoology 288: 222–230. doi: 10.1111/j.1469-7998.2012.00945.x
[2]  Ritchie EG, Johnson CN (2009) Predator interactions, mesopredator release and biodiversity conservation. Ecology Letters 12: 982–998. doi: 10.1111/j.1461-0248.2009.01347.x
[3]  Power ME, Tilman D, Estes JA, Menge BA, Bond WJ, et al. (1996) Challenges in the Quest for Keystones. BioScience 46: 609–620. doi: 10.2307/1312990
[4]  Kunkel KE, Atwood TC, Ruth TK, Pletscher DH, Hornocker MG (2012) Assessing wolves and cougars as conservation surrogates. Animal Conservation.
[5]  Elbroch LM, Wittmer HU (2012) Table scraps: inter-trophic food provisioning by pumas. Biology Letters 8: 776–779. doi: 10.1098/rsbl.2012.0423
[6]  Krebs C, Boonstra R, Boutin S, Sinclair ARE (2001) What Drives the 10-year Cycle of Snowshoe Hares? BioScience 51: 25–35. doi: 10.1641/0006-3568(2001)051[0025:wdtyco]2.0.co;2
[7]  Augustine DJ, McNaughton SJ (1998) Ungulate Effects on the Functional Species Composition of Plant Communities: Herbivore Selectivity and Plant Tolerance. The Journal of Wildlife Management 62: 1165–1183. doi: 10.2307/3801981
[8]  Bowyer RT, Person DK, Pierce BM (2005) Detecting top-down versus bottom-up regulation of ungulates by large carnivores: implications for conservation of biodiversity. In: Ray JC, Redford KH, Steneck R, Berger J, editors.Large carnivores and the conservation of biodiversity.Washington: Island Press. pp. 342–361.
[9]  Messier F (1994) Ungulate Population Models with Predation: A Case Study with the North American Moose. Ecology 75: 478–488. doi: 10.2307/1939551
[10]  Hobbs NT (1996) Modification of ecosystems by ungulates. The Journal of Wildlife Management 60: 695–713. doi: 10.2307/3802368
[11]  Beschta RL, Ripple WJ (2009) Large predators and trophic cascades in terrestrial ecosystems of the western United States. Biological Conservation 142: 2401–2414. doi: 10.1016/j.biocon.2009.06.015
[12]  Terborgh J, Lopez L, Nunez P, Rao M, Shahabuddin G, et al. (2001) Ecological meltdown in predator-free forest fragments. Science 294: 1923–1926. doi: 10.1126/science.1064397
[13]  Ripple WJ, Beschta RL (2006) Linking a cougar decline, trophic cascade, and catastrophic regime shift in Zion National Park. Biological Conservation 133: 397–408. doi: 10.1016/j.biocon.2006.07.002
[14]  Ray JC, Hunter L, Zigouris J (2005) Conservation priorities for larger African carnivores. Toronto: Wildlife Conservation Society.
[15]  Hazzah L, Borgerhoff Mulder M, Frank L (2009) Lions and Warriors: Social factors underlying declining African lion populations and the effect of incentive-based management in Kenya. Biological Conservation 142: 2428–2437. doi: 10.1016/j.biocon.2009.06.006
[16]  Watts HE, Holekamp KE (2009) Ecological determinants of survival and reproduction in the spotted hyena. Journal of Mammalogy 90: 461–471. doi: 10.1644/08-mamm-a-136.1
[17]  Balme GA, Slotow R, Hunter LTB (2009) Impact of conservation interventions on the dynamics and persistence of a persecuted leopard (Panthera pardus) population. Biological Conservation 142: 2681–2690. doi: 10.1016/j.biocon.2009.06.020
[18]  Loveridge AJ, Hemson G, Davidson Z, Macdonald D (2010) African lions on the edge: reserve boundaries as “attractive sinks”. In: Macdonald DW, Loveridge AJ, editors.Biology and conservation of Wild Felids.New York: Oxford University Press. pp. 283–304.
[19]  Woodroffe R, Frank LG (2005) Lethal control of African lions (Panthera leo): local and regional population impacts. Animal Conservation 8: 91–98. doi: 10.1017/s1367943004001829
[20]  Balme GA, Slotow R, Hunter LTB (2010) Edge effects and the impact of non-protected areas in carnivore conservation: leopards in the Phinda–Mkhuze Complex, South Africa. Animal Conservation 13: 315–323. doi: 10.1111/j.1469-1795.2009.00342.x
[21]  Rodríguez-Soto C, Monroy-Vilchis O, Maiorano L, Boitani L, Faller JC, et al. (2011) Predicting potential distribution of the jaguar (Panthera onca) in Mexico: identification of priority areas for conservation. Diversity and Distributions 17: 350–361. doi: 10.1111/j.1472-4642.2010.00740.x
[22]  Hayward M, Hayward G, Druce D, Kerley GH (2009) Do fences constrain predator movements on an evolutionary scale? Home range, food intake and movement patterns of large predators reintroduced to Addo Elephant National Park, South Africa. Biodiversity and Conservation 18: 887–904. doi: 10.1007/s10531-008-9452-y
[23]  Valeix M, Loveridge A, Davidson Z, Madzikanda H, Fritz H, et al. (2010) How key habitat features influence large terrestrial carnivore movements: waterholes and African lions in a semi-arid savanna of north-western Zimbabwe. Landscape Ecology 25: 337–351. doi: 10.1007/s10980-009-9425-x
[24]  Pita R, Mira A, Moreira F, Morgado R, Beja P (2009) Influence of landscape characteristics on carnivore diversity and abundance in Mediterranean farmland. Agriculture, Ecosystems & Environment 132: 57–65. doi: 10.1016/j.agee.2009.02.008
[25]  Schadt S, Revilla E, Wiegand T, Knauer F, Kaczensky P, et al. (2002) Assessing the suitability of central European landscapes for the reintroduction of Eurasian lynx. Journal of Applied Ecology 39: 189–203. doi: 10.1046/j.1365-2664.2002.00700.x
[26]  Brotons L, Thuiller W, Araujo MB, Hirzel AH (2004) Presence-absence versus presence-only modelling methods for predicting bird habitat suitability. Ecography 27: 437–448. doi: 10.1111/j.0906-7590.2004.03764.x
[27]  Royle JA, Chandler RB, Yackulic C, Nichols JD (2012) Likelihood analysis of species occurrence probability from presence-only data for modelling species distributions. Methods in Ecology and Evolution 3: 545–554. doi: 10.1111/j.2041-210x.2011.00182.x
[28]  Mills MGL, Freitag S, Van Jaarsveld AS (2001) Geographic priorities for carnivore conservation in Africa. In: Gittleman JL, Funk SM, Macdonald D, Wayne RK, editors.Carnivore Conservation.Cambridge: Cambridge University Press. pp. 467–483.
[29]  Riggio J, Jacobson A, Dollar L, Bauer H, Becker M, et al.. (2012) The size of savannah Africa: a lion's (Panthera leo) view. Biodiversity and Conservation: 1–19.
[30]  IUCN (2007) Regional Conservation Strategy for the Cheetah and African Wild Dog in Eastern Africa. Gland, Switzerland.
[31]  TAWIRI (2009) Tanzania Carnivore Conservation Action Plan. Arusha.
[32]  Dickman AJ (2008) Key determinants of conflict between people and wildlife, particularly large carnivores, around Ruaha National Park, Tanzania. [PhD thesis]. London: University College London. 373 p.
[33]  Phillips SJ, Anderson RP, Schapire RE (2006) Maximum entropy modeling of species geographic distributions. Ecological Modelling 190: 231–259. doi: 10.1016/j.ecolmodel.2005.03.026
[34]  Hirzel AH, Hausser J, Chessel D, Perrin N (2002) Ecological-niche factor analysis: how to compute habitat-suitability maps without absence data? Ecology 83: 2027–2036. doi: 10.2307/3071784
[35]  Cortes C, Vapnik V (1995) Support-vector networks. Machine Learning 20: 273–297. doi: 10.1007/bf00994018
[36]  Drake JM, Randin C, Guisan A (2006) Modelling ecological niches with support vector machines. Journal of Applied Ecology 43: 424–432. doi: 10.1111/j.1365-2664.2006.01141.x
[37]  Zaniewski AE, Lehmann A, Overton JMC (2002) Predicting species spatial distributions using presence-only data: a case study of native New Zealand ferns. Ecological Modelling 157: 261–280. doi: 10.1016/s0304-3800(02)00199-0
[38]  Zarco-González M, Monroy-Vilchis O, Rodríguez-Soto C, Urios V (2012) Spatial factors and management associated with livestock predations by Puma concolor in Central Mexico. Human Ecology 40: 631–638. doi: 10.1007/s10745-012-9505-4
[39]  Cabeza M, Araújo MB, Wilson RJ, Thomas CD, Cowley MJR, et al. (2004) Combining probabilities of occurrence with spatial reserve design. Journal of Applied Ecology 41: 252–262. doi: 10.1111/j.0021-8901.2004.00905.x
[40]  Marmion M, Parviainen M, Luoto M, Heikkinen RK, Thuiller W (2009) Evaluation of consensus methods in predictive species distribution modelling. Diversity and Distributions 15: 59–69. doi: 10.1111/j.1472-4642.2008.00491.x
[41]  Araújo MB, New M (2007) Ensemble forecasting of species distributions. Trends in Ecology & Evolution 22: 42–47. doi: 10.1016/j.tree.2006.09.010
[42]  Olson DM, Dinerstein E (1998) The global 200: a representation approach to conserving the Earth's most biologically valuable ecoregions. Conservation Biology 12: 502–515. doi: 10.1046/j.1523-1739.1998.012003502.x
[43]  Kendall CJ (2011) The spatial and agricultural basis of crop raiding by the Vulnerable common hippopotamus Hippopotamus amphibius around Ruaha National Park, Tanzania. Oryx 45: 28–34. doi: 10.1017/s0030605310000359
[44]  IUCN (2009) Category II National Park. World Commission on Protected Areas (WCPA) of IUCN -The World Conservation Union. 10/09/2009 ed: IUCN.
[45]  Walsh MT (2000) The Development of Community Wildlife Management in Tanzania: Lessons from the Ruaha Ecosystem. Mweka,Tanzania: African Wildlife Management in the New Millennium.
[46]  Darch C (1996) Tanzania: Clio Press.
[47]  ESA (2009) ESA Globcover Project. In: MEDIAS, editor. France/Postel: MEDIAS.
[48]  Sosovele H, Ngwale JJ (2002) Socio-economic root causes of the loss of biodiversity in the Ruaha catchment area.
[49]  Millar RB, Anderson MJ (2004) Remedies for pseudoreplication. Fisheries Research 70: 397–407. doi: 10.1016/j.fishres.2004.08.016
[50]  Dormann CF, M. McPherson J, B. Araújo M, Bivand R, Bolliger J, et al. (2007) Methods to account for spatial autocorrelation in the analysis of species distributional data: a review. Ecography 30: 609–628. doi: 10.1111/j.2007.0906-7590.05171.x
[51]  Varela S, Rodríguez J, Lobo JM (2009) Is current climatic equilibrium a guarantee for the transferability of distribution model predictions? A case study of the spotted hyena. Journal of Biogeography 36: 1645–1655. doi: 10.1111/j.1365-2699.2009.02125.x
[52]  Hunter L, Henschel P, Ray JC (2013) Leopard Panthera pardus. In: Kingdon J, Hoffmann M, editors. The Mammals of Africa: A & C Black.
[53]  Ogutu JO, Dublin HT (2002) Demography of lions in relation to prey and habitat in the Maasai Mara National Reserve, Kenya. African Journal of Ecology 40: 120–129. doi: 10.1046/j.1365-2028.2002.00343.x
[54]  Packer C, Hilborn R, Mosser A, Kissui B, Borner M, et al. (2005) Ecological Change, Group Territoriality, and Population Dynamics in Serengeti Lions. Science 307: 390–393. doi: 10.1126/science.1105122
[55]  Gavashelishvili A, Lukarevskiy V (2008) Modelling the habitat requirements of leopard Panthera pardus in west and central Asia. Journal of Applied Ecology 45: 579–588. doi: 10.1111/j.1365-2664.2007.01432.x
[56]  Warren D, Glor R, Turelli M (2010) ENMTools: a toolbox for comparative studies of environmental niche models. Ecography 33: 607–611. doi: 10.1111/j.1600-0587.2009.06142.x
[57]  Guisan A, Edwards TC Jr, Hastie T (2002) Generalized linear and generalized additive models in studies of species distributions: setting the scene. Ecological Modelling 157: 89–100. doi: 10.1016/s0304-3800(02)00204-1
[58]  Elith J, H. Graham* C, P. Anderson R, Dudík M, Ferrier S, et al. (2006) Novel methods improve prediction of species' distributions from occurrence data. Ecography 29: 129–151. doi: 10.1111/j.2006.0906-7590.04596.x
[59]  USGS (2000) USGS/GLCF, 3 arcsec, Filled Finished-A, Tanzania. Shuttle Radar Topography Mission: Global Land Cover Facility. University of Maryland, College Park, Maryland, February 2000.
[60]  Hijmans RJ, Cameron SE, Parra JL, Jones PG, Jarvis A (2005) Very high resolution interpolated climate surfaces for global land areas. International Journal of Climatology: 1965–1978.
[61]  FAO Africover (2004) Tanzania - Rivers (Africover). FAO - Africover, http://www.africover.org/system/metadata?.php?metadataid=104#.
[62]  Levin N, Shmida A, Levanoni O, Tamari H, Kark S (2007) Predicting mountain plant richness and rarity from space using satellite-derived vegetation indices. Diversity and Distributions 13: 692–703. doi: 10.1111/j.1472-4642.2007.00372.x
[63]  Bradley BA, Fleishman E (2008) Can remote sensing of land cover improve species distribution modelling? Journal of Biogeography 35: 1158–1159. doi: 10.1111/j.1365-2699.2008.01928.x
[64]  Loe LE, Bonenfant C, Mysterud A, Gaillard JM, Langvatn R, et al. (2005) Climate predictability and breeding phenology in red deer: timing and synchrony of rutting and calving in Norway and France. Journal of Animal Ecology 74: 579–588. doi: 10.1111/j.1365-2656.2005.00987.x
[65]  Pettorelli N, Weladji RB, Holand O, Mysterud A, Breie H, et al. (2005) The relative role of winter and spring conditions: linking climate and landscape-scale plant phenology to alpine reindeer body mass. Biology Letters 1: 24–26. doi: 10.1098/rsbl.2004.0262
[66]  Townshend JRG, Carroll M, Dimiceli C, Sohlberg R, Hansen M, et al.. (2011) Vegetation Continuous Fields MOD44B. 2001 Percent Tree Cover: University of Maryland, College Park, Maryland, 2001.
[67]  Clark CM, Cleland EE, Collins SL, Fargione JE, Gough L, et al. (2007) Environmental and plant community determinants of species loss following nitrogen enrichment. Ecology Letters 10: 596–607. doi: 10.1111/j.1461-0248.2007.01053.x
[68]  Packer C, Loveridge A, Canney S, Caro T, Garnett ST, et al. (2013) Conserving large carnivores: dollars and fence. Ecology Letters 16: 635–641. doi: 10.1111/ele.12091
[69]  Loveridge AJ, Canney S (2009) African lion distribution modeling project Horsham, UK.: Born Free Foundation.
[70]  Esri (2012) ArcGIS. 10.1 ed. Redlands, CA, USA.
[71]  Eastman JR (2012) IDRISI Selva. Worcester, MA: Clark University.
[72]  R Core Team (2012) R: A language and environment for statistical computing. 2.15.1 ed. Vienna, Austria: R Foundation for Statistical Computing.
[73]  Elith J, Phillips SJ, Hastie T, Dudík M, Chee YE, et al. (2011) A statistical explanation of MaxEnt for ecologists. Diversity and Distributions 17: 43–57. doi: 10.1111/j.1472-4642.2010.00725.x
[74]  Gu W, Swihart RK (2004) Absent or undetected? Effects of non-detection of species occurrence on wildlife–habitat models. Biological Conservation 116: 195–203. doi: 10.1016/s0006-3207(03)00190-3
[75]  Jiménez-Valverde A, Lobo JM, Hortal J (2008) Not as good as they seem: the importance of concepts in species distribution modelling. Diversity and Distributions 14: 885–890. doi: 10.1111/j.1472-4642.2008.00496.x
[76]  Hutchinson GE (1957) Concluding Remarks. Cold Spring Harbor Symposia on Quantitative Biology 22: 415–427. doi: 10.1101/sqb.1957.022.01.039
[77]  Pulliam HR (2000) On the relationship between niche and distribution. Ecology Letters 3: 349–361. doi: 10.1046/j.1461-0248.2000.00143.x
[78]  Basille M, Herfindal I, Santin-Janin H, Linnell JDC, Odden J, et al. (2009) What shapes Eurasian lynx distribution in human dominated landscapes: selecting prey or avoiding people? Ecography 32: 683–691. doi: 10.1111/j.1600-0587.2009.05712.x
[79]  Xuezhi W, Weihua X, Zhiyun O, Jianguo L, Yi X, et al. (2008) Application of ecological-niche factor analysis in habitat assessment of giant pandas. Acta Ecologica Sinica 28: 821–828. doi: 10.1016/s1872-2032(08)60030-x
[80]  Leverette T, Metaxas A (2005) Predicting habitat for two species of deep-water coral on the Canadian Atlantic continental shelf and slope. In: Freiwald A, Robert JM, editors.Cold-Water Corals and Ecosystems: Springer. pp. 467–479.
[81]  Simard F, Ayala D, Kamdem G, Pombi M, Etouna J, et al. (2009) Ecological niche partitioning between Anopheles gambiae molecular forms in Cameroon: the ecological side of speciation. BMC Ecology 9: 17. doi: 10.1186/1472-6785-9-17
[82]  Braunisch V, Bollmann K, Graf RF, Hirzel AH (2008) Living on the edge—Modelling habitat suitability for species at the edge of their fundamental niche. Ecological Modelling 214: 153–167. doi: 10.1016/j.ecolmodel.2008.02.001
[83]  Zarco-González MM, Monroy-Vilchis O, Alaníz J (2013) Spatial model of livestock predation by jaguar and puma in Mexico: Conservation planning. Biological Conservation 159: 80–87. doi: 10.1016/j.biocon.2012.11.007
[84]  Pouteau R, Meyer J-Y, Taputuarai R, Stoll B (2012) Support vector machines to map rare and endangered native plants in Pacific islands forests. Ecological Informatics 9: 37–46. doi: 10.1016/j.ecoinf.2012.03.003
[85]  Drake J, Bossenbroek J (2009) Profiling ecosystem vulnerability to invasion by zebra mussels with support vector machines. Theoretical Ecology 2: 189–198. doi: 10.1007/s12080-009-0050-8
[86]  Karatzoglou A, Meyer D, Hornik K (2006) Support Vector Machines in R. Journal of Statistical Software. 15: 1–32.
[87]  Yu W, Liu T, Valdez R, Gwinn M, Khoury M (2010) Application of support vector machine modeling for prediction of common diseases: the case of diabetes and pre-diabetes. BMC Medical Informatics and Decision Making 10: 16. doi: 10.1186/1472-6947-10-16
[88]  Hanley JA, McNeil BJ (1982) The meaning and use of the area under a receiver operating characteristic (ROC) curve. Radiology 143: 29–36.
[89]  Thuiller W, Lavorel S, Araujo MB (2005) Niche properties and geographical extent as predictors of species sensitivity to climate change. Global Ecology and Biogeography 14: 347–357. doi: 10.1111/j.1466-822x.2005.00162.x
[90]  Lobo JM, Jiménez-Valverde A, Real R (2008) AUC: a misleading measure of the performance of predictive distribution models. Global Ecology and Biogeography 17: 145–151. doi: 10.1111/j.1466-8238.2007.00358.x
[91]  Manel S, Williams HC, Ormerod SJ (2001) Evaluating presence–absence models in ecology: the need to account for prevalence. Journal of Applied Ecology 38: 921–931. doi: 10.1046/j.1365-2664.2001.00647.x
[92]  Pearce J, Ferrier S (2000) Evaluating the predictive performance of habitat models developed using logistic regression. Ecological Modelling 133: 225–245. doi: 10.1016/s0304-3800(00)00322-7
[93]  Segurado P, Araújo MB (2004) An evaluation of methods for modelling species distributions. Journal of Biogeography 31: 1555–1568. doi: 10.1111/j.1365-2699.2004.01076.x
[94]  Liu CR, Berry PM, Dawson TP, Pearson RG (2005) Selecting thresholds of occurrence in the prediction of species distributions. Ecography 28: 385–393. doi: 10.1111/j.0906-7590.2005.03957.x
[95]  Valeix M, Loveridge AJ, Chamaille-Jammes S, Davidson Z, Murindagomo F, et al. (2009) Behavioral adjustments of African herbivores to predation risk by lions: Spatiotemporal variations influence habitat use. Ecology 90: 23–30. doi: 10.1890/08-0606.1
[96]  Balme GA, Batchelor A, Britz ND, Seymour G, Grover M, et al. (2013) Reproductive success of female leopards Panthera pardus: the importance of top-down processes. Mammal Review 43: 221–237. doi: 10.1111/j.1365-2907.2012.00219.x
[97]  Kolowski JM, Holekamp KE (2009) Ecological and anthropogenic influences on space use by spotted hyaenas. Journal of Zoology 277: 23–36. doi: 10.1111/j.1469-7998.2008.00505.x
[98]  Simcharoen S, Barlow ACD, Simcharoen A, Smith JLD (2008) Home range size and daytime habitat selection of leopards in Huai Kha Khaeng Wildlife Sanctuary, Thailand. Biological Conservation 141: 2242–2250. doi: 10.1016/j.biocon.2008.06.015
[99]  Steyn V, Funston PJ (2009) Land-use and socio-spatial organization of female leopards in a semi-arid wooded savanna, Botswana. South African Journal of Wildlife Research 39: 126–132. doi: 10.3957/056.039.0203
[100]  Hayward MW, Henschel P, O'Brien J, Hofmeyr M, Balme G, et al. (2006) Prey preferences of the leopard (Panthera pardus). Journal of Zoology 270: 298–313. doi: 10.1111/j.1469-7998.2006.00139.x
[101]  Balme G, Hunter L, Slotow R (2007) Feeding habitat selection by hunting leopards Panthera pardus in a woodland savanna: prey catchability versus abundance. Animal Behaviour 74: 589–598. doi: 10.1016/j.anbehav.2006.12.014
[102]  Marker LL, Dickman AJ (2005) Factors affecting leopard (Panthera pardus) spatial ecology, with particular reference to Namibian farmlands. South African Journal of Wildlife Research 35: 105–115.
[103]  Hayward MW, Kerley GIH (2005) Prey preferences of the lion (Panthera leo). Journal of Zoology 267: 309–322. doi: 10.1017/s0952836905007508
[104]  Hayward MW, Kerley GIH (2008) Prey preferences and dietary overlap amongst Africa's large predators. South African Journal of Wildlife Research 38: 93–108. doi: 10.3957/0379-4369-38.2.93
[105]  Hopcraft JGC, Sinclair ARE, Packer C (2005) Planning for success: Serengeti lions seek prey accessibility rather than abundance. Journal of Animal Ecology 74: 559–566. doi: 10.1111/j.1365-2656.2005.00955.x
[106]  Mosser A, Fryxell JM, Eberly L, Packer C (2009) Serengeti real estate: density vs. fitness-based indicators of lion habitat quality. Ecology Letters 12: 1050–1060. doi: 10.1111/j.1461-0248.2009.01359.x
[107]  Davidson Z, Valeix M, Van Kesteren F, Loveridge AJ, Hunt JE, et al. (2013) Seasonal diet and prey preference of the African Lion in a waterhole-driven semi-arid savanna. PLoS ONE 8: e55182. doi: 10.1371/journal.pone.0055182
[108]  Ogutu JO, Piepho HP, Dublin HT, Bhola N, Reid RS (2008) Rainfall influences on ungulate population abundance in the Mara-Serengeti ecosystem. Journal of Animal Ecology 77: 814–829. doi: 10.1111/j.1365-2656.2008.01392.x
[109]  Valeix M, Hemson G, Loveridge AJ, Mills G, Macdonald DW (2012) Behavioural adjustments of a large carnivore to access secondary prey in a human-dominated landscape. Journal of Applied Ecology 49: 73–81. doi: 10.1111/j.1365-2664.2011.02099.x
[110]  Yirga G, Ersino W, De Iongh HH, Leirs H, Gebrehiwot K, et al. (2013) Spotted hyena (Crocuta crocuta) coexisting at high density with people in Wukro district, northern Ethiopia. Mammalian Biology - Zeitschrift für S?ugetierkunde 78: 193–197. doi: 10.1016/j.mambio.2012.09.001
[111]  Boydston EE, Kapheim KM, Watts HE, Szykman M, Holekamp KE (2003) Altered behaviour in spotted hyenas associated with increased human activity. Animal Conservation 6: 207–219. doi: 10.1017/s1367943003003263
[112]  Holekamp KE, Smale L, Szykman M (1996) Rank and reproduction in the female spotted hyaena. Journal of Reproduction and Fertility 108: 229–237. doi: 10.1530/jrf.0.1080229
[113]  Cooper SM, Holekamp KE, Smale L (1999) A seasonal feast: long-term analysis of feeding behaviour in the spotted hyaena (Crocuta crocuta). African Journal of Ecology 37: 149–160. doi: 10.1046/j.1365-2028.1999.00161.x
[114]  Liu CR, White M, Newell G (2013) Selecting thresholds for the prediction of species occurrence with presence-only data. Journal of Biogeography 40: 778–789. doi: 10.1111/jbi.12058

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133