The nuclear receptors and xenosensors constitutive androstane receptor (CAR, NR1I3) and pregnane X receptor (PXR, NR1I2) induce the expression of xenobiotic metabolizing enzymes and transporters, which also affects various endobiotics. While human and mouse CAR feature a high basal activity and low induction upon ligand exposure, we recently identified two constitutive androstane receptors in Xenopus laevis (xlCARá and a) that possess PXR-like characteristics such as low basal activity and activation in response to structurally diverse compounds. Using a set of complementary computational and biochemical approaches we provide evidence for xlCARá being the structural and functional counterpart of mammalian PXR. A three-dimensional model of the xlCARá ligand-binding domain (LBD) reveals a human PXR-like L-shaped ligand binding pocket with a larger volume than the binding pockets in human and murine CAR. The shape and amino acid composition of the ligand-binding pocket of xlCAR suggests PXR-like binding of chemically diverse ligands which was confirmed by biochemical methods. Similarly to PXR, xlCARá possesses a flexible helix 11′. Modest increase in the recruitment of coactivator PGC-1á may contribute to the enhanced basal activity of three gain-of-function xlCARá mutants humanizing key LBD amino acid residues. xlCARá and PXR appear to constitute an example of convergent evolution.
References
[1]
Hwang-Verslues WW, Sladek FM (2010) HNF4α – role in drug metabolism and potential drug target? Curr Opin Pharmacol 10: 698–705. doi: 10.1016/j.coph.2010.08.010
[2]
Tolson AH, Wang H (2010) Regulation of drug-metabolizing enzymes by xenobiotic receptors: PXR and CAR. Adv Drug Deliv Rev 38: 2091–2095. doi: 10.1016/j.addr.2010.08.006
[3]
Math?s M, Burk O, Qiu H, Nuβhag C, G?dtel-Armbrust U, et al. (2012) Evolutionary history and functional characterization of the amphibian xenosensor CAR. Mol Endocrinol 26: 14–26. doi: 10.1210/me.2011-1235
[4]
di Masi A, De Marinis E, Ascenzi P, Marino M (2009) Nuclear receptors CAR and PXR: Molecular, functional, and biomedical aspects. Mol Aspects Med 30: 297–343. doi: 10.1016/j.mam.2009.04.002
[5]
Wang YM, Ong SS, Chai SC, Chen T (2012) Role of CAR and PXR in xenobiotic sensing and metabolism. Expert Opin Drug Metab Toxicol 8: 803–817. doi: 10.1517/17425255.2012.685237
[6]
Baes M, Gulick T, Choi HS, Martinoli MG, Simha D, et al. (1994) A new orphan member of the nuclear hormone receptor superfamily that interacts with a subset of retinoic acid response elements. Mol Cell Biol 14: 1544–1552.
[7]
Choi HS, Chung M, Tzameli I, Simha D, Lee YK, et al. (1997) Differential transactivation by two isoforms of the orphan nuclear hormone receptor CAR. J Biol Chem 272: 23565–23571. doi: 10.1074/jbc.272.38.23565
[8]
Dussault I, Lin M, Hollister K, Fan M, Termini J, et al. (2002) A structural model of the constitutive androstane receptor defines novel interactions that mediate ligand-independent activity. Mol Cell Biol 22: 5270–5280. doi: 10.1128/mcb.22.15.5270-5280.2002
[9]
Xu RX, Lambert MH, Wisely BB, Warren EN, Weinert EE, et al. (2004) A structural basis for constitutive activity in the human CAR/RXRα heterodimer. Mol Cell 16: 919–926. doi: 10.1016/j.molcel.2004.11.042
[10]
Frank C, Molnár F, Matilainen M, Lempi?inen H, Carlberg C (2004) Agonist-dependent and agonist-independent transactivations of the human constitutive androstane receptor are modulated by specific amino acid pairs. J Biol Chem 279: 33558–33566. doi: 10.1074/jbc.m403946200
[11]
Jyrkk?rinne J, Windshügel B, M?kinen J, Ylisirni? M, Per?kyl? M, et al. (2005) Amino acids important for ligand specificity of the human constitutive androstane receptor. J Biol Chem 280: 5960–5971. doi: 10.1074/jbc.m411241200
[12]
Windshügel B, Jyrkk?rinne J, Poso A, Honkakoski P, Sippl W (2005) Molecular dynamics simulations of the human CAR ligand-binding domain: deciphering the molecular basis for constitutive activity. J Mol Model 11: 69–79. doi: 10.1007/s00894-004-0227-4
[13]
Windshügel B, Jyrkk?rinne J, Vanamo J, Poso A, Honkakoski P, et al. (2007) Comparison of homology models and X-ray structures of the nuclear receptor CAR: assessing the structural basis of constitutive activity. J Mol Graph Model 25: 644–657. doi: 10.1016/j.jmgm.2006.05.002
[14]
Berman HM, Battistuz T, Bhat TN, Bluhm WF, Bourne PE, et al. (2002) The Protein Data Bank. Acta Crystallogr D Biol Crystallogr 58: 899–907. doi: 10.1107/s0907444902003451
[15]
Watkins RE, Wisely GB, Moore LB, Collins JL, Lambert MH, et al. (2001) The human nuclear xenobiotic receptor PXR: structural determinants of directed promiscuity. Science 292: 2329–2333. doi: 10.1126/science.1060762
[16]
Laskowski RA, MacArthur MW, Moss DS, Thornton JM (1993) PROCHECK - a program to check the stereochemical quality of protein structures. J Appl Cryst 26: 283–291. doi: 10.1107/s0021889892009944
[17]
Sippl MJ (1993) Recognition of Errors in Three-Dimensional Structures of Proteins. Proteins 17: 355–362. doi: 10.1002/prot.340170404
[18]
Canutescu AA, Shelenkov AA, Dunbrack RL Jr (2003) A graph-theory algorithm for rapid protein side-chain prediction. Protein Sci 12: 2001–2014. doi: 10.1110/ps.03154503
[19]
van der Spoel D, Lindahl E, Hess B, Groenhof G, Mark AE, et al. (2005) GROMACS: Fast, flexible and free. J. Comput. Chem 26: 1701–1718. doi: 10.1002/jcc.20291
[20]
Windshügel B, Poso A (2011) Constitutive activity and ligand-dependent activation of the nuclear receptor CAR—insights from molecular dynamics simulations. J Mol Recognit 24: 875–882. doi: 10.1002/jmr.1132
[21]
Hustert E, Zibat A, Presecan-Siedel E, Eiselt R, Mueller R, et al. (2001) Natural protein variants of pregnane X receptor with altered transactivation activity toward CYP3A4. Drug Metab Dispos 29: 1454–1459.
[22]
Geick A, Eichelbaum M, Burk O (2001) Nuclear receptor response elements mediate induction of intestinal MDR1 by rifampin. J Biol Chem 276: 14581–14587. doi: 10.1074/jbc.m010173200
[23]
Arnold KA, Eichelbaum M, Burk O (2004) Alternative splicing affects the function and tissue-specific expression of the human constitutive androstane receptor. Nucl Recept 2: 1.
[24]
Bros M, Ross XL, Pautz A, Reske-Kunz AB, Ross R (2003) The human fascin gene promoter is highly active in mature dendritic cells due to a stage-specific enhancer. J. Immunol 171: 1825–1834. doi: 10.4049/jimmunol.171.4.1825
[25]
Burk O, Tegude H, Koch I, Hustert E, Wolbold R, et al. (2002) Molecular mechanisms of polymorphic CYP3A7 expression in adult human liver and intestine. J Biol Chem 277: 24280–24288. doi: 10.1074/jbc.m202345200
[26]
G?dtel-Armbrust U, Metzger A, Kroll U, Kelber O, Wojnowski L (2007) Variability in PXR-mediated induction of CYP3A4 by commercial preparations and dry extracts of St. John's wort. Naunyn Schmiedebergs Arch Pharmacol 375: 377–382. doi: 10.1007/s00210-007-0172-8
[27]
Burk O, Piedade R, Ghebreghiorghis L, Fait JT, Nussler AK, et al. (2012) Differential effects of clinically used derivatives and metabolites of artemisinin in the activation of constitutive androstane receptor isoforms. Br J Pharmacol 167: 666–681. doi: 10.1111/j.1476-5381.2012.02033.x
[28]
Grün F, Venkatesan RN, Tabb MM, Zhou C, Cao J, et al. (2002) Benzoate X receptors alpha and beta are pharmacologically distinct and do not function as xenobiotic receptors. J Biol Chem 277: 43691–43697. doi: 10.1074/jbc.m206553200
[29]
Moore LB, Parks DJ, Jones SA, Bledsoe RK, Consler TG, et al. (2000) Orphan nuclear receptors constitutive androstane receptor and pregnane X receptor share xenobiotic and steroid ligands. J. Biol. Chem 275: 15122–15127. doi: 10.1074/jbc.m001215200
[30]
Auerbach SS, Stoner MA, Su S, Omiecinski CJ (2005) Retinoid X receptor-alpha-dependent transactivation by a naturally occurring structural variant of human constitutive androstane receptor (NR1I3). Mol Pharmacol 68: 1239–1253. doi: 10.1124/mol.105.013417
[31]
Jinno H, Tanaka-Kagawa T, Hanioka N, Ishida S, Saeki M, et al. (2004) Identification of novel alternative splice variants of human constitutive androstane receptor and characterization of their expression in the liver. Mol Pharmacol 65: 496–502. doi: 10.1124/mol.65.3.496
[32]
Ross J, Plummer SM, Rode A, Scheer N, Bower CC, et al. (2010) Human constitutive androstane receptor (CAR) and pregnane X receptor (PXR) support the hypertrophic but not the hyperplastic response to the murine nongenotoxic hepatocarcinogens phenobarbital and chlordane in vivo. Toxicol Sci 116: 452–466. doi: 10.1093/toxsci/kfq118
[33]
Chen T, Tompkins LM, Li L, Li H, Kim G, et al. (2010) A single amino acid controls the functional switch of human constitutive androstane receptor (CAR) 1 to the xenobiotic-sensitive splicing variant CAR3. J Pharmacol Exp Ther 332: 106–115. doi: 10.1124/jpet.109.159210
[34]
Jones SA, Moore LB, Shenk JL, Wisely GB, Hamilton GA, et al. (2000) The pregnane X receptor: a promiscuous xenobiotic receptor that has diverged during evolution. Mol Endocrinol 14: 27–39. doi: 10.1210/mend.14.1.0409
[35]
Moore LB, Maglich JM, McKee DD, Wisely B, Willson TM, et al. (2002) Pregnane X receptor (PXR), constitutive androstane receptor (CAR), and benzoate X receptor (BXR) define three pharmacologically distinct classes of nuclear receptors. Mol Endocrinol 16: 977–986. doi: 10.1210/mend.16.5.0828
[36]
Carnahan VE, Redinbo MR (2005) Structure and function of the human nuclear receptor PXR. Curr Drug Metab 6: 357–367. doi: 10.2174/1389200054633844
[37]
Krasowski MD, Ai N, Hagey LR, Kollitz EM, Kullman SW, et al. (2011) The evolution of farnesoid X, vitamin D, and pregnane X receptors: insights from the green-spotted pufferfish (Tetraodon nigriviridis) and other non-mammalian species. BMC Biochem 12: 5. doi: 10.1186/1471-2091-12-5