[1] | Crump JA, Luby SP, Mintz ED (2004) The global burden of typhoid fever. Bull World Health Organ 82: 346–353.
|
[2] | Garcia-del Portillo F (2001) Salmonella intracellular proliferation: where, when and how? Microbes Infect 3: 1305–1311. doi: 10.1016/s1286-4579(01)01491-5
|
[3] | Abrahams GL, Hensel M (2006) Manipulating cellular transport and immune responses: dynamic interactions between intracellular Salmonella enterica and its host cells. Cell Microbiol 8: 728–737. doi: 10.1111/j.1462-5822.2006.00706.x
|
[4] | Haraga A, Ohlson MB, Miller SI (2008) Salmonellae interplay with host cells. Nat Rev Microbiol 6: 53–66. doi: 10.1038/nrmicro1788
|
[5] | Brumell JH, Steele-Mortimer O, Finlay BB (1999) Bacterial invasion: Force feeding by Salmonella. Curr Biol 9: R277–280. doi: 10.1016/s0960-9822(99)80178-x
|
[6] | Klumpp J, Fuchs TM (2007) Identification of novel genes in genomic islands that contribute to Salmonella typhimurium replication in macrophages. Microbiology 153: 1207–1220. doi: 10.1099/mic.0.
|
[7] | Jones BD (2005) Salmonella invasion gene regulation: a story of environmental awareness. J Microbiol 43 Spec No: 110–117.
|
[8] | Ellermeier CD, Slauch JM (2003) RtsA and RtsB coordinately regulate expression of the invasion and flagellar genes in Salmonella enterica serovar Typhimurium. J Bacteriol 185: 5096–5108. doi: 10.1128/jb.185.17.5096-5108.2003
|
[9] | Thompson A, Rolfe MD, Lucchini S, Schwerk P, Hinton JC, et al. (2006) The bacterial signal molecule, ppGpp, mediates the environmental regulation of both the invasion and intracellular virulence gene programs of Salmonella. J Biol Chem 281: 30112–30121. doi: 10.1074/jbc.m605616200
|
[10] | Thompson A, Rowley G, Alston M, Danino V, Hinton JC (2006) Salmonella transcriptomics: relating regulons, stimulons and regulatory networks to the process of infection. Curr Opin Microbiol 9: 109–116. doi: 10.1016/j.mib.2005.12.010
|
[11] | Altier C (2005) Genetic and environmental control of Salmonella invasion. J Microbiol 43 Spec No: 85–92.
|
[12] | Bowden SD, Rowley G, Hinton JC, Thompson A (2009) Glucose and glycolysis are required for the successful infection of macrophages and mice by Salmonella enterica serovar Typhimurium. Infect Immun 77: 3117–3126. doi: 10.1128/iai.00093-09
|
[13] | Yimga MT, Leatham MP, Allen JH, Laux DC, Conway T, et al. (2006) Role of gluconeogenesis and the tricarboxylic acid cycle in the virulence of Salmonella enterica serovar Typhimurium in BALB/c mice. Infect Immun 74: 1130–1140. doi: 10.1128/iai.74.2.1130-1140.2006
|
[14] | Bowden SD, Ramachandran VK, Knudsen GM, Hinton JC, Thompson A (2010) An incomplete TCA cycle increases survival of Salmonella Typhimurium during infection of resting and activated murine macrophages. PLoS One 5: e13871. doi: 10.1371/journal.pone.0013871
|
[15] | Szeto J, Namolovan A, Osborne SE, Coombes BK, Brumell JH (2009) Salmonella-containing vacuoles display centrifugal movement associated with cell-to-cell transfer in epithelial cells. Infect Immun 77: 996–1007. doi: 10.1128/iai.01275-08
|
[16] | Hautefort I, Thompson A, Eriksson-Ygberg S, Parker ML, Lucchini S, et al. (2008) During infection of epithelial cells Salmonella enterica serovar Typhimurium undergoes a time-dependent transcriptional adaptation that results in simultaneous expression of three type 3 secretion systems. Cell Microbiol 10: 958–984. doi: 10.1111/j.1462-5822.2007.01099.x
|
[17] | Datsenko KA, Wanner BL (2000) One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc Natl Acad Sci USA 97: 6640–6645. doi: 10.1073/pnas.120163297
|
[18] | Smith HO, Levine M (1967) A phage P22 gene controlling integration of prophage. Virology 31: 207–216. doi: 10.1016/0042-6822(67)90164-x
|
[19] | Eriksson S, Bjorkman J, Borg S, Syk A, Pettersson S, et al. (2000) Salmonella typhimurium mutants that downregulate phagocyte nitric oxide production. Cell Microbiol 2: 239–250. doi: 10.1046/j.1462-5822.2000.00051.x
|
[20] | Fraenkel DG (1996) Glycolysis. In: Neidhardt FC, Curtiss R, Ingraham JL, Lin ECC, Low KB, et al., editors. Escherichia coli and Salmonella Typhimurium:Cellular and Molecular Biology.Washington, D. C.: ASM Press. pp. 189–198.
|
[21] | Riley M (1993) Functions of the gene products of Escherichia coli. Microbiol Rev 57: 862–952.
|
[22] | Rypniewski WR, Evans PR (1989) Crystal structure of unliganded phosphofructokinase from Escherichia coli. J Mol Biol 207: 805–821. doi: 10.1016/0022-2836(89)90246-5
|
[23] | Cabrera R, Caniuguir A, Ambrosio AL, Guixe V, Garratt RC, et al. (2006) Crystallization and preliminary crystallographic analysis of the tetrameric form of phosphofructokinase-2 from Escherichia coli, a member of the ribokinase family. Acta Crystallogr Sect F Struct Biol Cryst Commun 62: 935–937. doi: 10.1107/s1744309106032246
|
[24] | Kotlarz D, Garreau H, Buc H (1975) Regulation of the amount and of the activity of phosphofructokinases and pyruvate kinases in Escherichia coli. Biochim Biophys Acta 381: 257–268. doi: 10.1016/0304-4165(75)90232-9
|
[25] | Paterson GK, Cone DB, Peters SE, Maskell DJ (2009) Redundancy in the requirement for the glycolytic enzymes phosphofructokinase (Pfk) 1 and 2 in the in vivo fitness of Salmonella enterica serovar Typhimurium. Microb Pathog 46: 261–265. doi: 10.1016/j.micpath.2009.01.008
|
[26] | Postma PW, Lengeler JW, Jacobson GR (1993) Phosphoenolpyruvate:carbohydrate phosphotransferase systems of bacteria. Microbiol Rev 57: 543–594.
|
[27] | Eriksson S, Lucchini S, Thompson A, Rhen M, Hinton JC (2003) Unravelling the biology of macrophage infection by gene expression profiling of intracellular Salmonella enterica. Mol Microbiol 47: 103–118. doi: 10.1046/j.1365-2958.2003.03313.x
|
[28] | Saier MH Jr, Feucht BU (1975) Coordinate regulation of adenylate cyclase and carbohydrate permeases by the phosphoenolpyruvate:sugar phosphotransferase system in Salmonella typhimurium. J Biol Chem 250: 7078–7080.
|
[29] | Stock JB, Waygood EB, Meadow ND, Postma PW, Roseman S (1982) Sugar transport by the bacterial phosphotransferase system. The glucose receptors of the Salmonella typhimurium phosphotransferase system. J Biol Chem 257: 14543–14552.
|
[30] | Rephaeli AW, Saier MH Jr (1980) Substrate specificity and kinetic characterization of sugar uptake and phosphorylation, catalyzed by the mannose enzyme II of the phosphotransferase system in Salmonella typhimurium. J Biol Chem 255: 8585–8591.
|
[31] | Henderson PJ, Giddens RA, Jones-Mortimer MC (1977) Transport of galactose, glucose and their molecular analogues by Escherichia coli K12. Biochem J 162: 309–320.
|
[32] | Postma PW (1977) Galactose transport in Salmonella typhimurium. J Bacteriol 129: 630–639.
|
[33] | Death A, Ferenci T (1993) The importance of the binding-protein-dependent Mgl system to the transport of glucose in Escherichia coli growing on low sugar concentrations. Res Microbiol 144: 529–537. doi: 10.1016/0923-2508(93)90002-j
|
[34] | Hosono K, Kakuda H, Ichihara S (1995) Decreasing accumulation of acetate in a rich medium by Escherichia coli on introduction of genes on a multicopy plasmid. Biosci Biotechnol Biochem 59: 256–261. doi: 10.1271/bbb.59.256
|
[35] | Meyer D, Schneider-Fresenius C, Horlacher R, Peist R, Boos W (1997) Molecular characterization of glucokinase from Escherichia coli K-12. J Bacteriol 179: 1298–1306.
|
[36] | Malik-Kale P, Winfree S, Steele-Mortimer O (2012) The bimodal lifestyle of intracellular Salmonella in epithelial cells: replication in the cytosol obscures defects in vacuolar replication. PLoS One 7: e38732. doi: 10.1371/journal.pone.0038732
|
[37] | Knodler LA, Vinod N, Steele-Mortimer O (2014) Quantitative assessment of cytosolic Salmonella in epithelial cells. PLoS One 9: e84681. doi: 10.1371/journal.pone.0084681
|
[38] | Lorenz MC, Fink GR (2002) Life and death in a macrophage: role of the glyoxylate cycle in virulence. Eukaryot Cell 1: 657–662. doi: 10.1128/ec.1.5.657-662.2002
|
[39] | McKinney JD, Honer zu Bentrup K, Munoz-Elias EJ, Miczak A, Chen B, et al. (2000) Persistence of Mycobacterium tuberculosis in macrophages and mice requires the glyoxylate shunt enzyme isocitrate lyase. Nature 406: 735–738.
|
[40] | Fang FC, Libby SJ, Castor ME, Fung AM (2005) Isocitrate lyase (AceA) is required for Salmonella persistence but not for acute lethal infection in mice. Infect Immun 73: 2547–2549. doi: 10.1128/iai.73.4.2547-2549.2005
|
[41] | Cronan JE Jr, LaPorte D (1996) Tricarboxylic acid cycle and glyoxylate bypass. In: Neidhardt FC, Curtiss R, Ingraham JL, Lin ECC, Low KB, et al., editors. Escherichia coli and Salmonella Typhimurium: Cellular and Molecular Biology. Washington, D. C.: ASM Press. pp. 206–216.
|
[42] | Wilson RB, Maloy SR (1987) Isolation and characterization of Salmonella typhimurium glyoxylate shunt mutants. J Bacteriol 169: 3029–3034.
|
[43] | Smyer JR, Jeter RM (1989) Characterization of phosphoenolpyruvate synthase mutants in Salmonella typhimurium. Arch Microbiol 153: 26–32. doi: 10.1007/bf00277536
|
[44] | Carrillo-Castaneda G, Ortega MV (1970) Mutants of Salmonella typhimurium lacking phosphoenolpyruvate carboxykinase and alpha-ketoglutarate dehydrogenase activities. J Bacteriol 102: 524–530.
|
[45] | Abernathy J, Corkill C, Hinojosa C, Li X, Zhou H (2013) Deletions in the pyruvate pathway of Salmonella Typhimurium alter SPI1-mediated gene expression and infectivity. J Anim Sci Biotechnol 4: 5. doi: 10.1186/2049-1891-4-5
|
[46] | Steeb B, Claudi B, Burton NA, Tienz P, Schmidt A, et al. (2013) Parallel exploitation of diverse host nutrients enhances Salmonella virulence. PLoS Pathog 9: e1003301. doi: 10.1371/journal.ppat.1003301
|
[47] | Gotz A, Eylert E, Eisenreich W, Goebel W (2010) Carbon metabolism of enterobacterial human pathogens growing in epithelial colorectal adenocarcinoma (Caco-2) cells. PLoS One 5: e10586. doi: 10.1371/journal.pone.0010586
|
[48] | van der Vlag J, Postma PW (1995) Regulation of glycerol and maltose uptake by the IIAGlc-like domain of IINag of the phosphotransferase system in Salmonella typhimurium LT2. Mol Gen Genet 248: 236–241. doi: 10.1007/bf02190806
|
[49] | Deutscher J, Francke C, Postma PW (2006) How phosphotransferase system-related protein phosphorylation regulates carbohydrate metabolism in bacteria. Microbiol Mol Biol Rev 70: 939–1031. doi: 10.1128/mmbr.00024-06
|
[50] | Wray C, Sojka WJ (1978) Experimental Salmonella typhimurium infection in calves. Res Vet Sci 25: 139–143.
|
[51] | Wang RF, Kushner SR (1991) Construction of versatile low-copy-number vectors for cloning, sequencing and gene expression in Escherichia coli. Gene 100: 195–199. doi: 10.1016/0378-1119(91)90366-j
|