[1] | Papanikou E, Karamanou S, Economou A (2007) Bacterial protein secretion through the translocase nanomachine. Nat Rev Microbiol 5: 839–851. doi: 10.1038/nrmicro1771
|
[2] | Driessen AJ, Nouwen N (2008) Protein translocation across the bacterial cytoplasmic membrane. Annu Rev Biochem 77: 643–667. doi: 10.1146/annurev.biochem.77.061606.160747
|
[3] | Robinson C, Matos CF, Beck D, Ren C, Lawrence J, et al. (2011) Transport and proofreading of proteins by the twin-arginine translocation (Tat) system in bacteria. Biochim Biophys Acta 1808: 876–884. doi: 10.1016/j.bbamem.2010.11.023
|
[4] | Chagnot C, Zorgani MA, Astruc T, Desvaux M (2013) Proteinaceous determinants of surface colonization in bacteria: bacterial adhesion and biofilm formation from a protein secretion perspective. Front Microbiol 4: 303. doi: 10.3389/fmicb.2013.00303
|
[5] | Economou A, Christie PJ, Fernandez RC, Palmer T, Plano GV, et al. (2006) Secretion by numbers: Protein traffic in prokaryotes. Mol Microbiol 62: 308–319. doi: 10.1111/j.1365-2958.2006.05377.x
|
[6] | Desvaux M, Hebraud M, Talon R, Henderson IR (2009) Secretion and subcellular localizations of bacterial proteins: a semantic awareness issue. Trends Microbiol 17: 139–145. doi: 10.1016/j.tim.2009.01.004
|
[7] | Desvaux P, Corman A, Hamidi K, Pinton P (2004) [Management of erectile dysfunction in daily practice—PISTES study]. Prog Urol 14: 512–520.
|
[8] | Finlay BB, Falkow S (1997) Common themes in microbial pathogenicity revisited. Microbiol Mol Biol Rev 61: 136–169.
|
[9] | Brodin P, Majlessi L, Marsollier L, de Jonge MI, Bottai D, et al. (2006) Dissection of ESAT-6 system 1 of Mycobacterium tuberculosis and impact on immunogenicity and virulence. Infect Immun 74: 88–98. doi: 10.1128/iai.74.1.88-98.2006
|
[10] | Abdallah AM, Gey van Pittius NC, Champion PA, Cox J, Luirink J, et al. (2007) Type VII secretion—mycobacteria show the way. Nat Rev Microbiol 5: 883–891. doi: 10.1038/nrmicro1773
|
[11] | Pallen MJ (2002) The ESAT-6/WXG100 superfamily — and a new Gram-positive secretion system? Trends Microbiol 10: 209–212. doi: 10.1016/s0966-842x(02)02345-4
|
[12] | Gey Van Pittius NC, Gamieldien J, Hide W, Brown GD, Siezen RJ, et al. (2001) The ESAT-6 gene cluster of Mycobacterium tuberculosis and other high G+C Gram-positive bacteria. Genome Biol 2: RESEARCH0044. doi: 10.1186/gb-2001-2-10-research0044
|
[13] | Sorensen AL, Nagai S, Houen G, Andersen P, Andersen AB (1995) Purification and characterization of a low-molecular-mass T-cell antigen secreted by Mycobacterium tuberculosis. Infect Immun 63: 1710–1717.
|
[14] | Berthet FX, Rasmussen PB, Rosenkrands I, Andersen P, Gicquel B (1998) A Mycobacterium tuberculosis operon encoding ESAT-6 and a novel low-molecular-mass culture filtrate protein (CFP-10). Microbiology 144 (Pt 11): 3195–3203. doi: 10.1099/00221287-144-11-3195
|
[15] | Sutcliffe I (2011) New insights into the distribution of WXG100 protein secretion systems. Antoine Van Leeuwenhoek 99: 127–131. doi: 10.1007/s10482-010-9507-4
|
[16] | Burts ML, Williams WA, DeBord K, Missiakas DM (2005) EsxA and EsxB are secreted by an ESAT-6-like system that is required for the pathogenesis of Staphylococcus aureus infections. Proc Natl Acad Sci U S A 102: 1169–1174. doi: 10.1073/pnas.0405620102
|
[17] | Burts ML, DeDent AC, Missiakas DM (2008) EsaC substrate for the ESAT-6 secretion pathway and its role in persistent infections of Staphylococcus aureus. Mol Microbiol 69: 736–746. doi: 10.1111/j.1365-2958.2008.06324.x
|
[18] | Anderson M, Chen YH, Butler EK, Missiakas DM (2011) EsaD, a secretion factor for the Ess pathway in Staphylococcus aureus. J Bacteriol 193: 1583–1589. doi: 10.1128/jb.01096-10
|
[19] | Chen YH, Anderson M, Hendrickx AP, Missiakas D (2012) Characterization of EssB, a protein required for secretion of ESAT-6 like proteins in Staphylococcus aureus. BMC Microbiol 12: 219. doi: 10.1186/1471-2180-12-219
|
[20] | Garufi G, Butler E, Missiakas D (2008) ESAT-6-like protein secretion in Bacillus anthracis. J Bacteriol 190: 7004–7011. doi: 10.1128/jb.00458-08
|
[21] | Akpe San Roman S, Facey PD, Fernandez-Martinez L, Rodriguez C, Vallin C, et al. (2010) A heterodimer of EsxA and EsxB is involved in sporulation and is secreted by a type VII secretion system in Streptomyces coelicolor. Microbiology 156: 1719–1729. doi: 10.1099/mic.0.037069-0
|
[22] | Hsu T, Hingley-Wilson SM, Chen B, Chen M, Dai AZ, et al. (2003) The primary mechanism of attenuation of bacillus Calmette-Guerin is a loss of secreted lytic function required for invasion of lung interstitial tissue. Proc Natl Acad Sci U S A 100: 12420–12425. doi: 10.1073/pnas.1635213100
|
[23] | Pym AS, Brodin P, Brosch R, Huerre M, Cole ST (2002) Loss of RD1 contributed to the attenuation of the live tuberculosis vaccines Mycobacterium bovis BCG and Mycobacterium microti. Mol Microbiol 46: 709–717. doi: 10.1046/j.1365-2958.2002.03237.x
|
[24] | Stanley SA, Raghavan S, Hwang WW, Cox JS (2003) Acute infection and macrophage subversion by Mycobacterium tuberculosis require a specialized secretion system. Proc Natl Acad Sci U S A 100: 13001–13006. doi: 10.1073/pnas.2235593100
|
[25] | de Jonge MI, Pehau-Arnaudet G, Fretz MM, Romain F, Bottai D, et al. (2007) ESAT-6 from Mycobacterium tuberculosis dissociates from its putative chaperone CFP-10 under acidic conditions and exhibits membrane-lysing activity. J Bacteriol 189: 6028–6034. doi: 10.1128/jb.00469-07
|
[26] | Sani M, Houben EN, Geurtsen J, Pierson J, de Punder K, et al. (2010) Direct visualization by cryo-EM of the mycobacterial capsular layer: a labile structure containing ESX-1-secreted proteins. PLoS Pathog 6: e1000794. doi: 10.1371/journal.ppat.1000794
|
[27] | Garces A, Atmakuri K, Chase MR, Woodworth JS, Krastins B, et al. (2010) EspA acts as a critical mediator of ESX1-dependent virulence in Mycobacterium tuberculosis by affecting bacterial cell wall integrity. PLoS Pathog 6: e1000957. doi: 10.1371/journal.ppat.1000957
|
[28] | Renshaw PS, Lightbody KL, Veverka V, Muskett FW, Kelly G, et al. (2005) Structure and function of the complex formed by the tuberculosis virulence factors CFP-10 and ESAT-6. EMBO J 24: 2491–2498. doi: 10.1038/sj.emboj.7600732
|
[29] | Fyans JK, Bignell D, Loria R, Toth I, Palmer T (2012) The ESX/type VII secretion system modulates development, but not virulence, of the plant pathogen Streptomyces scabies. Mol Plant Pathol.
|
[30] | Converse SE, Cox JS (2005) A protein secretion pathway critical for Mycobacterium tuberculosis virulence is conserved and functional in Mycobacterium smegmatis. J Bacteriol 187: 1238–1245. doi: 10.1128/jb.187.4.1238-1245.2005
|
[31] | Barbe V, Cruveiller S, Kunst F, Lenoble P, Meurice G, et al. (2009) From a consortium sequence to a unified sequence: the Bacillus subtilis 168 reference genome a decade later. Microbiology 155: 1758–1775. doi: 10.1099/mic.0.027839-0
|
[32] | Sao-Jose C, Baptista C, Santos MA (2004) Bacillus subtilis operon encoding a membrane receptor for bacteriophage SPP1. J Bacteriol 186: 8337–8346. doi: 10.1128/jb.186.24.8337-8346.2004
|
[33] | Nicolas P, Mader U, Dervyn E, Rochat T, Leduc A, et al. (2012) Condition-dependent transcriptome reveals high-level regulatory architecture in Bacillus subtilis. Science 335: 1103–1106. doi: 10.1126/science.1206848
|
[34] | Baptista C, Barreto HC, Sao-Jose C (2013) High Levels of DegU-P Activate an Esat-6-Like Secretion System in Bacillus subtilis. PLoS One 8: e67840. doi: 10.1371/journal.pone.0067840
|
[35] | Fujita M (2000) Temporal and selective association of multiple sigma factors with RNA polymerase during sporulation in Bacillus subtilis. Genes Cells 5: 79–88. doi: 10.1046/j.1365-2443.2000.00307.x
|
[36] | Rasmussen S, Nielsen HB, Jarmer H (2009) The transcriptionally active regions in the genome of Bacillus subtilis. Mol Microbiol 73: 1043–1057. doi: 10.1111/j.1365-2958.2009.06830.x
|
[37] | Rosenberg A, Sinai L, Smith Y, Ben-Yehuda S (2012) Dynamic expression of the translational machinery during Bacillus subtilis life cycle at a single cell level. PLoS One 7: e41921. doi: 10.1371/journal.pone.0041921
|
[38] | Marchadier E, Carballido-Lopez R, Brinster S, Fabret C, Mervelet P, et al. (2011) An expanded protein-protein interaction network in Bacillus subtilis reveals a group of hubs: Exploration by an integrative approach. Proteomics 11: 2981–2991. doi: 10.1002/pmic.201000791
|
[39] | Garti-Levi S, Eswara A, Smith Y, Fujita M, Ben-Yehuda S (2013) Novel modulators controlling entry into sporulation in Bacillus subtilis. J Bacteriol 195: 1475–1483. doi: 10.1128/jb.02160-12
|
[40] | Kobayashi K (2007) Gradual activation of the response regulator DegU controls serial expression of genes for flagellum formation and biofilm formation in Bacillus subtilis. Mol Microbiol 66: 395–409. doi: 10.1111/j.1365-2958.2007.05923.x
|
[41] | Fortune SM, Jaeger A, Sarracino DA, Chase MR, Sassetti CM, et al. (2005) Mutually dependent secretion of proteins required for mycobacterial virulence. Proc Natl Acad Sci U S A 102: 10676–10681. doi: 10.1073/pnas.0504922102
|
[42] | Xu J, Laine O, Masciocchi M, Manoranjan J, Smith J, et al. (2007) A unique Mycobacterium ESX-1 protein co-secretes with CFP-10/ESAT-6 and is necessary for inhibiting phagosome maturation. Mol Microbiol 66: 787–800. doi: 10.1111/j.1365-2958.2007.05959.x
|
[43] | McLaughlin B, Chon JS, MacGurn JA, Carlsson F, Cheng TL, et al. (2007) A mycobacterium ESX-1-secreted virulence factor with unique requirements for export. PLoS Pathog 3: e105. doi: 10.1371/journal.ppat.0030105
|
[44] | Raghavan S, Manzanillo P, Chan K, Dovey C, Cox JS (2008) Secreted transcription factor controls Mycobacterium tuberculosis virulence. Nature 454: 717–721. doi: 10.1038/nature07219
|
[45] | MacGurn JA, Raghavan S, Stanley SA, Cox JS (2005) A non-RD1 gene cluster is required for Snm secretion in Mycobacterium tuberculosis. Mol Microbiol 57: 1653–1663. doi: 10.1111/j.1365-2958.2005.04800.x
|
[46] | Xia Y, Xie S, Ma X, Wu H, Wang X, et al. (2011) The purL gene of Bacillus subtilis is associated with nematicidal activity. FEMS Microbiol Lett 322: 99–107. doi: 10.1111/j.1574-6968.2011.02336.x
|
[47] | Ruiz A, Neilson JB, Bulmer GS (1982) Control of Cryptococcus neoformans in nature by biotic factors. Sabouraudia 20: 21–29. doi: 10.1080/00362178285380051
|
[48] | Coros A, Callahan B, Battaglioli E, Derbyshire KM (2008) The specialized secretory apparatus ESX-1 is essential for DNA transfer in Mycobacterium smegmatis. Mol Microbiol 69: 794–808. doi: 10.1111/j.1365-2958.2008.06299.x
|
[49] | Rosch TC, Golman W, Hucklesby L, Gonzalez-Pastor JE, Graumann PL (2014) The Presence of Conjugative Plasmid pLS20 Affects Global Transcription of Its Bacillus subtilis Host and Confers Beneficial Stress Resistance to Cells. Appl Environ Microbiol 80: 1349–1358. doi: 10.1128/aem.03154-13
|
[50] | Sambrook JR, DW (2006) The condensed protocols from molecular cloning: a laboratory manual. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press.
|
[51] | Gryczan TJ, Contente S, Dubnau D (1978) Characterization of Staphylococcus aureus plasmids introduced by transformation into Bacillus subtilis. J Bacteriol 134: 318–329.
|
[52] | Bertani G (1951) Studies on lysogenesis. I. The mode of phage liberation by lysogenic Escherichia coli. J Bacteriol 62: 293–300.
|
[53] | Cutting SVH, PB (1990) Genetic analyses. In: Hardwood CR CS, editor. Molecular biological methods for Bacillus.New York: John Wiley &Sons. pp. 27–61.
|
[54] | Keller A, Eng J, Zhang N, Li XJ, Aebersold R (2005) A uniform proteomics MS/MS analysis platform utilizing open XML file formats. Mol Syst Biol 1 : 2005 0017.
|
[55] | Zhang B, VerBerkmoes NC, Langston MA, Uberbacher E, Hettich RL, et al. (2006) Detecting differential and correlated protein expression in label-free shotgun proteomics. J Proteome Res 5: 2909–2918. doi: 10.1021/pr0600273
|
[56] | Youngman PJ, Perkins JB, Losick R (1983) Genetic transposition and insertional mutagenesis in Bacillus subtilis with Streptococcus faecalis transposon Tn917. Proc Natl Acad Sci U S A 80: 2305–2309. doi: 10.1073/pnas.80.8.2305
|
[57] | Guerout-Fleury AM, Frandsen N, Stragier P (1996) Plasmids for ectopic integration in Bacillus subtilis. Gene 180: 57–61. doi: 10.1016/s0378-1119(96)00404-0
|