全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS ONE  2014 

Modulation of Mouse Embryonic Stem Cell Proliferation and Neural Differentiation by the P2X7 Receptor

DOI: 10.1371/journal.pone.0096281

Full-Text   Cite this paper   Add to My Lib

Abstract:

Background Novel developmental functions have been attributed to the P2X7 receptor (P2X7R) including proliferation stimulation and neural differentiation. Mouse embryonic stem cells (ESC), induced with retinoic acid to neural differentiation, closely assemble processes occurring during neuroectodermal development of the early embryo. Principal Findings P2X7R expression together with the pluripotency marker Oct-4 was highest in undifferentiated ESC. In undifferentiated cells, the P2X7R agonist Bz-ATP accelerated cell cycle entry, which was blocked by the specific P2X7R inhibitor KN-62. ESC induced to neural differentiation with retinoic acid, reduced Oct-4 and P2X7R expression. P2X7R receptor-promoted intracellular calcium fluxes were obtained at lower Bz-ATP ligand concentrations in undifferentiated and in neural-differentiated cells compared to other studies. The presence of KN-62 led to increased number of cells expressing SSEA-1, Dcx and β3-tubulin, as well as the number of SSEA-1 and β3-tubulin-double-positive cells confirming that onset of neuroectodermal differentiation and neuronal fate determination depends on suppression of P2X7R activity. Moreover, an increase in the number of Ki-67 positive cells in conditions of P2X7R inhibition indicates rescue of progenitors into the cell cycle, augmenting the number of neuroblasts and consequently neurogenesis. Conclusions In embryonic cells, P2X7R expression and activity is upregulated, maintaining proliferation, while upon induction to neural differentiation P2X7 receptor expression and activity needs to be suppressed.

References

[1]  North RA (2002) Molecular physiology of P2X receptors. Physiol Rev 82: 1013–1067.
[2]  North RA, Surprenant A (2000) Pharmacology of cloned P2X receptors. Annu Rev Pharmacol Toxicol 40: 563–580. doi: 10.1146/annurev.pharmtox.40.1.563
[3]  Zanovello P, Bronte V, Rosato A, Pizzo P, Di Virgilio F (1990) Responses of mouse lymphocytes to extracellular ATP. II. Extracellular ATP causes cell type-dependent lysis and DNA fragmentation. J Immunol 145: 1545–1550.
[4]  Adinolfi E, Callegari MG, Ferrari D, Bolognesi C, Minelli M, et al. (2005) Basal activation of the P2X7 ATP receptor elevates mitochondrial calcium and potential, increases cellular ATP levels, and promotes serum-independent growth. Mol Biol Cell 16: 3260–3272. doi: 10.1091/mbc.e04-11-1025
[5]  Thompson BA, Storm MP, Hewinson J, Hogg S, Welham MJ, et al. (2012) A novel role for P2X7 receptor signalling in the survival of mouse embryonic stem cells. Cell Signal 24: 770–778. doi: 10.1016/j.cellsig.2011.11.012
[6]  Adinolfi E, Callegari MG, Cirillo M, Pinton P, Giorgi C, et al. (2009) Expression of the P2X7 receptor increases the Ca2+ content of the endoplasmic reticulum, activates NFATc1, and protects from apoptosis. J Biol Chem 284: 10120–10128. doi: 10.1074/jbc.m805805200
[7]  Adinolfi E, Cirillo M, Woltersdorf R, Falzoni S, Chiozzi P, et al. (2010) Trophic activity of a naturally occurring truncated isoform of the P2X7 receptor. FASEB J 24: 3393–3404. doi: 10.1096/fj.09-153601
[8]  Adinolfi E, Melchiorri L, Falzoni S, Chiozzi P, Morelli A, et al. (2002) P2X7 receptor expression in evolutive and indolent forms of chronic B lymphocytic leukemia. Blood 99: 706–708. doi: 10.1182/blood.v99.2.706
[9]  Baricordi OR, Melchiorri L, Adinolfi E, Falzoni S, Chiozzi P, et al. (1999) Increased proliferation rate of lymphoid cells transfected with the P2X(7) ATP receptor. J Biol Chem 274: 33206–33208. doi: 10.1074/jbc.274.47.33206
[10]  Coutinho-Silva R, Persechini PM (1997) P2Z purinoceptor-associated pores induced by extracellular ATP in macrophages and J774 cells. Am J Physiol 273: C1793–1800.
[11]  Virginio C, MacKenzie A, North RA, Surprenant A (1999) Kinetics of cell lysis, dye uptake and permeability changes in cells expressing the rat P2X7 receptor. J Physiol 519 Pt 2: 335–346. doi: 10.1111/j.1469-7793.1999.0335m.x
[12]  Zimmermann H (2006) Nucleotide signaling in nervous system development. Pflugers Arch 452: 573–588. doi: 10.1007/s00424-006-0067-4
[13]  Burnstock G, Ulrich H (2011) Purinergic signaling in embryonic and stem cell development. Cell Mol Life Sci 68: 1369–1394. doi: 10.1007/s00018-010-0614-1
[14]  Lin JH, Takano T, Arcuino G, Wang X, Hu F, et al. (2007) Purinergic signaling regulates neural progenitor cell expansion and neurogenesis. Dev Biol 302: 356–366. doi: 10.1016/j.ydbio.2006.09.017
[15]  Collo G, Neidhart S, Kawashima E, Kosco-Vilbois M, North RA, et al. (1997) Tissue distribution of the P2X7 receptor. Neuropharmacology 36: 1277–1283. doi: 10.1016/s0028-3908(97)00140-8
[16]  Eckfeldt CE, Mendenhall EM, Verfaillie CM (2005) The molecular repertoire of the ‘almighty’ stem cell. Nat Rev Mol Cell Biol 6: 726–737. doi: 10.1038/nrm1713
[17]  Hooper M, Hardy K, Handyside A, Hunter S, Monk M (1987) HPRT-deficient (Lesch-Nyhan) mouse embryos derived from germline colonization by cultured cells. Nature 326: 292–295. doi: 10.1038/326292a0
[18]  Magin TM, McWhir J, Melton DW (1992) A new mouse embryonic stem cell line with good germ line contribution and gene targeting frequency. Nucleic Acids Res 20: 3795–3796. doi: 10.1093/nar/20.14.3795
[19]  da Silva RL, Resende RR, Ulrich H (2007) Alternative splicing of P2X6 receptors in developing mouse brain and during in vitro neuronal differentiation. Exp Physiol 92: 139–145. doi: 10.1113/expphysiol.2006.921304
[20]  Glaser T, Cappellari AR, Pillat MM, Iser IC, Wink MR, et al. (2012) Perspectives of purinergic signaling in stem cell differentiation and tissue regeneration. Purinergic Signal 8: 523–537. doi: 10.1007/s11302-011-9282-3
[21]  Glaser T, Resende RR, Ulrich H (2013) Implications of purinergic receptor-mediated intracellular calcium transients in neural differentiation. Cell Commun Signal 11: 12. doi: 10.1186/1478-811x-11-12
[22]  Heo JS, Han HJ (2006) ATP stimulates mouse embryonic stem cell proliferation via protein kinase C, phosphatidylinositol 3-kinase/Akt, and mitogen-activated protein kinase signaling pathways. Stem Cells 24: 2637–2648. doi: 10.1634/stemcells.2005-0588
[23]  Resende RR, Gomes KN, Adhikari A, Britto LR, Ulrich H (2008) Mechanism of acetylcholine-induced calcium signaling during neuronal differentiation of P19 embryonal carcinoma cells in vitro. Cell Calcium 43: 107–121. doi: 10.1016/j.ceca.2007.04.007
[24]  Fornazari M, Nascimento IC, Nery AA, da Silva CC, Kowaltowski AJ, et al. (2011) Neuronal differentiation involves a shift from glucose oxidation to fermentation. J Bioenerg Biomembr 43: 531–539. doi: 10.1007/s10863-011-9374-3
[25]  Negraes PD, Lameu C, Hayashi MA, Melo RL, Camargo AC, et al. (2011) The snake venom peptide Bj-PRO-7a is a M1 muscarinic acetylcholine receptor agonist. Cytometry A 79: 77–83. doi: 10.1002/cyto.a.20963
[26]  Sykes DA, Dowling MR, Charlton SJ (2009) Exploring the mechanism of agonist efficacy: a relationship between efficacy and agonist dissociation rate at the muscarinic M3 receptor. Mol Pharmacol 76: 543–551. doi: 10.1124/mol.108.054452
[27]  Pal R, Mamidi MK, Das AK, Rao M, Bhonde R (2013) Development of a multiplex PCR assay for characterization of embryonic stem cells. Methods Mol Biol 1006: 147–166. doi: 10.1007/978-1-62703-389-3_11
[28]  Oliveira SL, Pillat MM, Cheffer A, Lameu C, Schwindt TT, et al. (2013) Functions of neurotrophins and growth factors in neurogenesis and brain repair. Cytometry A 83: 76–89. doi: 10.1002/cyto.a.22161
[29]  Guo X, Ying W, Wan J, Hu Z, Qian X, et al. (2001) Proteomic characterization of early-stage differentiation of mouse embryonic stem cells into neural cells induced by all-trans retinoic acid in vitro. Electrophoresis 22: 3067–3075. doi: 10.1002/1522-2683(200108)22:14<3067::aid-elps3067>3.0.co;2-v
[30]  Faherty S, Fitzgerald A, Keohan M, Quinlan LR (2007) Self-renewal and differentiation of mouse embryonic stem cells as measured by Oct4 expression: the role of the cAMP/PKA pathway. In Vitro Cell Dev Biol Anim 43: 37–47. doi: 10.1007/s11626-006-9001-5
[31]  Radzisheuskaya A, Chia Gle B, dos Santos RL, Theunissen TW, Castro LF, et al. (2013) A defined Oct4 level governs cell state transitions of pluripotency entry and differentiation into all embryonic lineages. Nat Cell Biol 15: 579–590. doi: 10.1038/ncb2742
[32]  Nicke A (2008) Homotrimeric complexes are the dominant assembly state of native P2X7 subunits. Biochem Biophys Res Commun 377: 803–808. doi: 10.1016/j.bbrc.2008.10.042
[33]  Young MT, Pelegrin P, Surprenant A (2007) Amino acid residues in the P2X7 receptor that mediate differential sensitivity to ATP and BzATP. Mol Pharmacol 71: 92–100. doi: 10.1124/mol.106.030163
[34]  Cheewatrakoolpong B, Gilchrest H, Anthes JC, Greenfeder S (2005) Identification and characterization of splice variants of the human P2X7 ATP channel. Biochem Biophys Res Commun 332: 17–27. doi: 10.1016/j.bbrc.2006.02.038
[35]  Masin M, Young C, Lim K, Barnes SJ, Xu XJ, et al. (2012) Expression, assembly and function of novel C-terminal truncated variants of the mouse P2X7 receptor: re-evaluation of P2X7 knockouts. Br J Pharmacol 165: 978–993. doi: 10.1111/j.1476-5381.2011.01624.x
[36]  Gooi HC, Feizi T, Kapadia A, Knowles BB, Solter D, et al. (1981) Stage-specific embryonic antigen involves alpha 1 goes to 3 fucosylated type 2 blood group chains. Nature 292: 156–158. doi: 10.1038/292156a0
[37]  Bianchi BR, Lynch KJ, Touma E, Niforatos W, Burgard EC, et al. (1999) Pharmacological characterization of recombinant human and rat P2X receptor subtypes. Eur J Pharmacol 376: 127–138. doi: 10.1016/s0014-2999(99)00350-7
[38]  Evans RJ, Lewis C, Buell G, Valera S, North RA, et al. (1995) Pharmacological characterization of heterologously expressed ATP-gated cation channels (P2x purinoceptors). Mol Pharmacol 48: 178–183.
[39]  Hibell AD, Kidd EJ, Chessell IP, Humphrey PP, Michel AD (2000) Apparent species differences in the kinetic properties of P2X(7) receptors. Br J Pharmacol 130: 167–173. doi: 10.1038/sj.bjp.0703302
[40]  Chessell IP, Michel AD, Humphrey PP (1998) Effects of antagonists at the human recombinant P2X7 receptor. Br J Pharmacol 124: 1314–1320. doi: 10.1038/sj.bjp.0701958
[41]  Hibell AD, Thompson KM, Xing M, Humphrey PP, Michel AD (2001) Complexities of measuring antagonist potency at P2X(7) receptor orthologs. J Pharmacol Exp Ther 296: 947–957.
[42]  Donnelly-Roberts DL, Jarvis MF (2007) Discovery of P2X7 receptor-selective antagonists offers new insights into P2X7 receptor function and indicates a role in chronic pain states. Br J Pharmacol 151: 571–579. doi: 10.1038/sj.bjp.0707265
[43]  Burnstock G, Williams M (2000) P2 purinergic receptors: modulation of cell function and therapeutic potential. J Pharmacol Exp Ther 295: 862–869.
[44]  Di Virgilio F, Ferrari D, Adinolfi E (2009) P2X(7): a growth-promoting receptor-implications for cancer. Purinergic Signal 5: 251–256. doi: 10.1007/s11302-009-9145-3
[45]  Tsao HK, Chiu PH, Sun SH (2013) PKC-dependent ERK phosphorylation is essential for P2X7 receptor-mediated neuronal differentiation of neural progenitor cells. Cell Death Dis 4: e751. doi: 10.1038/cddis.2013.274
[46]  Wu PY, Lin YC, Chang CL, Lu HT, Chin CH, et al. (2009) Functional decreases in P2X7 receptors are associated with retinoic acid-induced neuronal differentiation of Neuro-2a neuroblastoma cells. Cell Signal 21: 881–891. doi: 10.1016/j.cellsig.2009.01.036
[47]  Orellano EA, Rivera OJ, Chevres M, Chorna NE, Gonzalez FA (2010) Inhibition of neuronal cell death after retinoic acid-induced down-regulation of P2X7 nucleotide receptor expression. Mol Cell Biochem 337: 83–99. doi: 10.1007/s11010-009-0288-x
[48]  Burdon T, Smith A, Savatier P (2002) Signalling, cell cycle and pluripotency in embryonic stem cells. Trends Cell Biol 12: 432–438. doi: 10.1016/s0962-8924(02)02352-8
[49]  Lemoli RM, Ferrari D, Fogli M, Rossi L, Pizzirani C, et al. (2004) Extracellular nucleotides are potent stimulators of human hematopoietic stem cells in vitro and in vivo. Blood 104: 1662–1670. doi: 10.1182/blood-2004-03-0834
[50]  Bianco F, Ceruti S, Colombo A, Fumagalli M, Ferrari D, et al. (2006) A role for P2X7 in microglial proliferation. J Neurochem 99: 745–758. doi: 10.1111/j.1471-4159.2006.04101.x
[51]  Adinolfi E, Raffaghello L, Giuliani AL, Cavazzini L, Capece M, et al. (2012) Expression of P2X7 receptor increases in vivo tumor growth. Cancer Res 72: 2957–2969. doi: 10.1158/0008-5472.can-11-1947
[52]  Kapur N, Mignery GA, Banach K (2007) Cell cycle-dependent calcium oscillations in mouse embryonic stem cells. Am J Physiol Cell Physiol 292: C1510–1518. doi: 10.1152/ajpcell.00181.2006
[53]  Savatier P, Huang S, Szekely L, Wiman KG, Samarut J (1994) Contrasting patterns of retinoblastoma protein expression in mouse embryonic stem cells and embryonic fibroblasts. Oncogene 9: 809–818.
[54]  Savatier P, Lapillonne H, Jirmanova L, Vitelli L, Samarut J (2002) Analysis of the cell cycle in mouse embryonic stem cells. Methods Mol Biol 185: 27–33. doi: 10.1385/1-59259-241-4:27
[55]  Orford KW, Scadden DT (2008) Deconstructing stem cell self-renewal: genetic insights into cell-cycle regulation. Nat Rev Genet 9: 115–128. doi: 10.1038/nrg2269
[56]  Zhu D, Qu L, Zhang X, Lou Y (2005) Icariin-mediated modulation of cell cycle and p53 during cardiomyocyte differentiation in embryonic stem cells. Eur J Pharmacol 514: 99–110. doi: 10.1016/j.ejphar.2005.03.031
[57]  Yuahasi KK, Demasi MA, Tamajusuku AS, Lenz G, Sogayar MC, et al. (2012) Regulation of neurogenesis and gliogenesis of retinoic acid-induced P19 embryonal carcinoma cells by P2X2 and P2X7 receptors studied by RNA interference. Int J Dev Neurosci 30: 91–97. doi: 10.1016/j.ijdevneu.2011.12.010
[58]  Capela A, Temple S (2002) LeX/ssea-1 is expressed by adult mouse CNS stem cells, identifying them as nonependymal. Neuron 35: 865–875. doi: 10.1016/s0896-6273(02)00835-8
[59]  Capela A, Temple S (2006) LeX is expressed by principle progenitor cells in the embryonic nervous system, is secreted into their environment and binds Wnt-1. Dev Biol 291: 300–313. doi: 10.1016/j.ydbio.2005.12.030
[60]  Francis F, Koulakoff A, Boucher D, Chafey P, Schaar B, et al. (1999) Doublecortin is a developmentally regulated, microtubule-associated protein expressed in migrating and differentiating neurons. Neuron 23: 247–256. doi: 10.1016/s0896-6273(00)80777-1
[61]  Kerr MA, Stocks SC (1992) The role of CD15-(Le(X))-related carbohydrates in neutrophil adhesion. Histochem J 24: 811–826. doi: 10.1007/bf01046353
[62]  Uchida N, Buck DW, He D, Reitsma MJ, Masek M, et al. (2000) Direct isolation of human central nervous system stem cells. Proc Natl Acad Sci U S A 97: 14720–14725. doi: 10.1073/pnas.97.26.14720
[63]  Allendoerfer KL, Durairaj A, Matthews GA, Patterson PH (1999) Morphological domains of Lewis-X/FORSE-1 immunolabeling in the embryonic neural tube are due to developmental regulation of cell surface carbohydrate expression. Dev Biol 211: 208–219. doi: 10.1006/dbio.1999.9308
[64]  Pruszak J, Ludwig W, Blak A, Alavian K, Isacson O (2009) CD15, CD24, and CD29 define a surface biomarker code for neural lineage differentiation of stem cells. Stem Cells 27: 2928–2940. doi: 10.1002/stem.211
[65]  Menezes JR, Luskin MB (1994) Expression of neuron-specific tubulin defines a novel population in the proliferative layers of the developing telencephalon. J Neurosci 14: 5399–5416.
[66]  Memberg SP, Hall AK (1995) Dividing neuron precursors express neuron-specific tubulin. J Neurobiol 27: 26–43. doi: 10.1002/neu.480270104
[67]  Hynes RO, Patel R, Miller RH (1986) Migration of neuroblasts along preexisting axonal tracts during prenatal cerebellar development. J Neurosci 6: 867–876.
[68]  Doe CQ (2008) Neural stem cells: balancing self-renewal with differentiation. Development 135: 1575–1587. doi: 10.1242/dev.014977

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133