Cdc42 is critical in a myriad of cellular morphogenic processes, requiring precisely regulated activation dynamics to affect specific cellular events. To facilitate direct observations of Cdc42 activation in live cells, we developed and validated a new biosensor of Cdc42 activation. The biosensor is genetically encoded, of single-chain design and capable of correctly localizing to membrane compartments as well as interacting with its upstream regulators including the guanine nucleotide dissociation inhibitor. We characterized this new biosensor in motile mouse embryonic fibroblasts and observed robust activation dynamics at leading edge protrusions, similar to those previously observed for endogenous Cdc42 using the organic dye-based biosensor system. We then extended our validations and observations of Cdc42 activity to macrophages, and show that this new biosensor is able to detect differential activation patterns during phagocytosis and cytokine stimulation. Furthermore, we observe for the first time, a highly transient and localized activation of Cdc42 during podosome formation in macrophages, which was previously hypothesized but never directly visualized.
References
[1]
Johnson DI (1999) Cdc42: An essential Rho-type GTPase controlling eukaryotic cell polarity. Microbiol Mol Biol Rev 63: 54–105.
[2]
Tang Y, Olufemi L, Wang MT, Nie D (2008) Role of Rho GTPases in breast cancer. Front Biosci 13: 759–776. doi: 10.2741/2718
[3]
Cerione RA (2004) Cdc42: new roads to travel. Trends Cell Biol 14: 127–132. doi: 10.1016/j.tcb.2004.01.008
[4]
Stengel K, Zheng Y (2011) Cdc42 in oncogenic transformation, invasion, and tumorigenesis. Cell Signal 23: 1415–1423. doi: 10.1016/j.cellsig.2011.04.001
[5]
Wennerberg K, Der CJ (2004) Rho-family GTPases: it's not only Rac and Rho (and I like it). J Cell Sci 117: 1301–1312. doi: 10.1242/jcs.01118
[6]
Nalbant P, Hodgson L, Kraynov V, Toutchkine A, Hahn KM (2004) Activation of endogenous Cdc42 visualized in living cells. Science 305: 1615–1619. doi: 10.1126/science.1100367
[7]
Hodgson L, Nalbant P, Shen F, Hahn K (2006) Imaging and photobleach correction of Mero-CBD, sensor of endogenous Cdc42 activation. Methods Enzymol 406: 140–156. doi: 10.1016/s0076-6879(06)06012-5
[8]
Seth A, Otomo T, Yin HL, Rosen MK (2003) Rational design of genetically encoded fluorescence resonance energy transfer-based sensors of cellular Cdc42 signaling. Biochemistry 42: 3997–4008. doi: 10.1021/bi026881z
[9]
Itoh RE, Kurokawa K, Ohba Y, Yoshizaki H, Mochizuki N, et al. (2002) Activation of rac and cdc42 video imaged by fluorescent resonance energy transfer-based single-molecule probes in the membrane of living cells. Mol Cell Biol 22: 6582–6591. doi: 10.1128/mcb.22.18.6582-6591.2002
[10]
Roberts PJ, Mitin N, Keller PJ, Chenette EJ, Madigan JP, et al. (2008) Rho Family GTPase modification and dependence on CAAX motif-signaled posttranslational modification. J Biol Chem 283: 25150–25163. doi: 10.1074/jbc.m800882200
[11]
Machacek M, Hodgson L, Welch C, Elliott H, Pertz O, et al. (2009) Coordination of Rho GTPase activities during cell protrusion. Nature 461: 99–103. doi: 10.1038/nature08242
[12]
Nagai T, Yamada S, Tominaga T, Ichikawa M, Miyawaki A (2004) Expanded dynamic range of fluorescent indicators for Ca(2+) by circularly permuted yellow fluorescent proteins. Proc Natl Acad Sci U S A 101: 10554–10559. doi: 10.1073/pnas.0400417101
[13]
Hodgson L, Pertz O, Hahn KM (2008) Design and optimization of genetically encoded fluorescent biosensors: GTPase biosensors. Methods Cell Biol 85: 63–81. doi: 10.1016/s0091-679x(08)85004-2
[14]
Pertz O, Hodgson L, Klemke RL, Hahn KM (2006) Spatiotemporal dynamics of RhoA activity in migrating cells. Nature 440: 1069–1072. doi: 10.1038/nature04665
[15]
Fritz RD, Letzelter M, Reimann A, Martin K, Fusco L, et al. (2013) A versatile toolkit to produce sensitive FRET biosensors to visualize signaling in time and space. Sci Signal 6: rs12. doi: 10.1126/scisignal.2004135
[16]
Michaelson D, Silletti J, Murphy G, D'Eustachio P, Rush M, et al. (2001) Differential localization of Rho GTPases in live cells: regulation by hypervariable regions and RhoGDI binding. J Cell Biol 152: 111–126. doi: 10.1083/jcb.152.1.111
[17]
Garcia-Mata R, Boulter E, Burridge K (2011) The ‘invisible hand’: regulation of RHO GTPases by RHOGDIs. Nat Rev Mol Cell Biol 12: 493–504. doi: 10.1038/nrm3153
[18]
Boulter E, Garcia-Mata R, Guilluy C, Dubash A, Rossi G, et al. (2010) Regulation of Rho GTPase crosstalk, degradation and activity by RhoGDI1. Nat Cell Biol 12: 477–483. doi: 10.1038/ncb2049
[19]
Ren XD, Kiosses WB, Schwartz MA (1999) Regulation of the small GTP-binding protein Rho by cell adhesion and the cytoskeleton. EMBO Journal 18: 578–585. doi: 10.1093/emboj/18.3.578
[20]
Hodgson L, Shen F, Hahn K (2010) Biosensors for characterizing the dynamics of rho family GTPases in living cells. Curr Protoc Cell Biol Chapter 14: Unit 14 11 11–26.
[21]
Zawistowski J, Sabouri-Ghomi M, Danuser G, Hahn K, Hodgson L (2013) A RhoC biosensor reveals differences in the activation kinetics of RhoA and RhoC in migrating cells. Plos One In Press. doi: 10.1371/journal.pone.0079877
[22]
Park H, Cox D (2009) Cdc42 regulates Fc gamma receptor-mediated phagocytosis through the activation and phosphorylation of Wiskott-Aldrich syndrome protein (WASP) and neural-WASP. Mol Biol Cell 20: 4500–4508. doi: 10.1091/mbc.e09-03-0230
[23]
Dovas A, Gevrey JC, Grossi A, Park H, Abou-Kheir W, et al. (2009) Regulation of podosome dynamics by WASp phosphorylation: implication in matrix degradation and chemotaxis in macrophages. J Cell Sci 122: 3873–3882. doi: 10.1242/jcs.051755
[24]
Park H, Cox D (2011) Syk regulates multiple signaling pathways leading to CX3CL1 chemotaxis in macrophages. J Biol Chem. doi: 10.1074/jbc.m110.185181
[25]
Cox D, Chang P, Zhang Q, Reddy PG, Bokoch GM, et al. (1997) Requirements for both Rac1 and Cdc42 in membrane ruffling and phagocytosis in leukocytes. J Exp Med 186: 1487–1494. doi: 10.1084/jem.186.9.1487
[26]
Liu H, Jiang D (2011) Fractalkine/CX3CR1 and atherosclerosis. Clin Chim Acta 412: 1180–1186. doi: 10.1016/j.cca.2011.03.036
[27]
Hoppe AD, Swanson JA (2004) Cdc42, Rac1, and Rac2 display distinct patterns of activation during phagocytosis. Mol Biol Cell 15: 3509–3519. doi: 10.1091/mbc.e03-11-0847
[28]
Cervero P, Panzer L, Linder S (2013) Podosome reformation in macrophages: assays and analysis. Methods Mol Biol 1046: 97–121. doi: 10.1007/978-1-62703-538-5_6
[29]
Linder S, Nelson D, Weiss M, Aepfelbacher M (1999) Wiskott-Aldrich syndrome protein regulates podosomes in primary human macrophages. Proc Natl Acad Sci U S A 96: 9648–9653. doi: 10.1073/pnas.96.17.9648
[30]
Cammer M, Gevrey JC, Lorenz M, Dovas A, Condeelis J, et al. (2009) The mechanism of CSF-1-induced Wiskott-Aldrich syndrome protein activation in vivo: a role for phosphatidylinositol 3-kinase and Cdc42. J Biol Chem 284: 23302–23311. doi: 10.1074/jbc.m109.036384
[31]
Blundell MP, Bouma G, Metelo J, Worth A, Calle Y, et al. (2009) Phosphorylation of WASp is a key regulator of activity and stability in vivo. Proc Natl Acad Sci U S A 106: 15738–15743. doi: 10.1073/pnas.0904346106
[32]
Tzima E, Kiosses WB, del Pozo MA, Schwartz MA (2003) Localized cdc42 activation, detected using a novel assay, mediates microtubule organizing center positioning in endothelial cells in response to fluid shear stress. J Biol Chem 278: 31020–31023. doi: 10.1074/jbc.m301179200
[33]
Park H, Cox D (2011) Syk regulates multiple signaling pathways leading to CX3CL1 chemotaxis in macrophages. J Biol Chem 286: 14762–14769. doi: 10.1074/jbc.m110.185181
[34]
Miskolci V, Spiering D, Cox D, Hodgson L (2013) A mix-and-measure assay for determining the activation status of endogenous Cdc42 in cytokine-stimulated macrophage cell lysates. Methods in Molecular Biology In Press.
[35]
Rizzo MA, Springer GH, Granada B, Piston DW (2004) An improved cyan fluorescent protein variant useful for FRET. Nat Biotechnol 22: 445–449. doi: 10.1038/nbt945
[36]
Parrini MC, Lei M, Harrison SC, Mayer BJ (2002) Pak1 kinase homodimers are autoinhibited in trans and dissociated upon activation by Cdc42 and Rac1. Molecular Cell 9: 73–83. doi: 10.1016/s1097-2765(01)00428-2
[37]
Spiering D, Hodgson L (2011) Multiplex Imaging of Rho GTPase Activities in Living Cells In: Rivero F, editor. Methods in Molecular Biology. New York: Humana Press, Inc.
[38]
Spiering D, Bravo-Cordero JJ, Moshfegh Y, Miskolci V, Hodgson L (2013) Quantitative Ratiometric Imaging of FRET-Biosensors in Living Cells. Methods Cell Biol 114: 593–609. doi: 10.1016/b978-0-12-407761-4.00025-7
[39]
Spiering D, Hodgson L (2012) Multiplex Imaging of Rho Family GTPase Activities in Living Cells. Methods in Molecular Biology 827: 215–234. doi: 10.1007/978-1-61779-442-1_15
[40]
Efron B, Tibshirani R (1993) An Introduction to the bootstrap. New York: Chapman & Hall. 436 p.