The majority of pre-clinical studies of hypoxic-ischemic encephalopathy at term-equivalent have focused on either relatively mild insults, or on functional paradigms of cerebral ischemia or hypoxia-ischemia/hypotension. There is surprisingly little information on the responses to single, severe ‘physiological’ insults. In this study we examined the evolution and pattern of neural injury after prolonged umbilical cord occlusion (UCO). 36 chronically instrumented fetal sheep at 125–129 days gestational age (term = 147 days) were subjected to either UCO until mean arterial pressure was < = 8 mmHg (n = 29), or sham occlusion (n = 7). Surviving fetuses were killed after 72 hours for histopathologic assessment with acid-fuchsin thionine. After UCO, 11 fetuses died with intractable hypotension and 5 ewes entered labor and were euthanized. The remaining 13 fetuses showed marked EEG suppression followed by evolving seizures starting at 5.8 (6.8) hours (median (interquartile range)). 6 of 13 developed status epilepticus, which was associated with a transient secondary increase in cortical impedance (a measure of cytotoxic edema, p<0.05). All fetuses showed moderate to severe neuronal loss in the hippocampus and the basal ganglia but mild cortical cell loss (p<0.05 vs sham occlusion). Status epilepticus was associated with more severe terminal hypotension (p<0.05) and subsequently, greater neuronal loss (p<0.05). In conclusion, profound UCO in term-equivalent fetal sheep was associated with delayed seizures, secondary cytotoxic edema, and subcortical injury, consistent with the predominant pattern after peripartum sentinel events at term. It is unclear whether status epilepticus exacerbated cortical injury or was simply a reflection of a longer duration of asphyxia.
References
[1]
Badawi N, Kurinczuk JJ, Keogh JM, Alessandri LM, O’Sullivan F, et al. (1998) Antepartum risk factors for newborn encephalopathy: the Western Australian case-control study. BMJ 317: 1549–1553. doi: 10.1136/bmj.317.7172.1549
[2]
de Vries LS, Jongmans MJ (2010) Long-term outcome after neonatal hypoxic-ischaemic encephalopathy. Arch Dis Child Fetal Neonatal Ed 95: F220–224. doi: 10.1136/adc.2008.148205
[3]
Bax M, Tydeman C, Flodmark O (2006) Clinical and MRI correlates of cerebral palsy: the European Cerebral Palsy Study. JAMA 296: 1602–1608. doi: 10.1001/jama.296.13.1602
[4]
Okereafor A, Allsop J, Counsell SJ, Fitzpatrick J, Azzopardi D, et al. (2008) Patterns of brain injury in neonates exposed to perinatal sentinel events. Pediatrics 121: 906–914. doi: 10.1542/peds.2007-0770
[5]
Barkovich AJ, Westmark K, Partridge C, Sola A, Ferriero DM (1995) Perinatal asphyxia: MR findings in the first 10 days. AJNR Am J Neuroradiol 16: 427–438.
[6]
Cowan F, Rutherford M, Groenendaal F, Eken P, Mercuri E, et al. (2003) Origin and timing of brain lesions in term infants with neonatal encephalopathy. Lancet 361: 736–742. doi: 10.1016/s0140-6736(03)12658-x
[7]
Barkovich AJ, Miller SP, Bartha A, Newton N, Hamrick SE, et al. (2006) MR imaging, MR spectroscopy, and diffusion tensor imaging of sequential studies in neonates with encephalopathy. AJNR Am J Neuroradiol 27: 533–547.
[8]
Drury P, Bennet L, Gunn AJ (2010) Mechanisms of hypothermic neuroprotection. Semin Fetal Neonatal Med 15: 287–292. doi: 10.1016/j.siny.2010.05.005
[9]
Edwards AD, Brocklehurst P, Gunn AJ, Halliday H, Juszczak E, et al. (2010) Neurological outcomes at 18 months of age after moderate hypothermia for perinatal hypoxic ischaemic encephalopathy: synthesis and meta-analysis of trial data. BMJ 340: c363. doi: 10.1136/bmj.c363
[10]
Robertson NJ, Faulkner S, Fleiss B, Bainbridge A, Andorka C, et al. (2013) Melatonin augments hypothermic neuroprotection in a perinatal asphyxia model. Brain 136: 90–105. doi: 10.1093/brain/aws285
[11]
Gunn AJ, Gunn TR, de Haan HH, Williams CE, Gluckman PD (1997) Dramatic neuronal rescue with prolonged selective head cooling after ischemia in fetal lambs. J Clin Invest 99: 248–256. doi: 10.1172/jci119153
[12]
Davidson JO, Green CR, Nicholson LF, O’Carroll SJ, Fraser M, et al. (2012) Connexin hemichannel blockade improves outcomes in a model of fetal ischemia. Ann Neurol 71: 121–132. doi: 10.1002/ana.22654
[13]
Tan WK, Williams CE, Gunn AJ, Mallard CE, Gluckman PD (1992) Suppression of postischemic epileptiform activity with MK-801 improves neural outcome in fetal sheep. Ann Neurol 32: 677–682. doi: 10.1002/ana.410320511
[14]
Hunter CJ, Bennet L, Power GG, Roelfsema V, Blood AB, et al. (2003) Key neuroprotective role for endogenous adenosine A1 receptor activation during asphyxia in the fetal sheep. Stroke 34: 2240–2245. doi: 10.1161/01.str.0000083623.77327.ce
[15]
de Haan HH, Gunn AJ, Williams CE, Gluckman PD (1997) Brief repeated umbilical cord occlusions cause sustained cytotoxic cerebral edema and focal infarcts in near-term fetal lambs. Pediatr Res 41: 96–104. doi: 10.1203/00006450-199701000-00015
[16]
Ikeda T, Murata Y, Quilligan EJ, Choi BH, Parer JT, et al. (1998) Physiologic and histologic changes in near-term fetal lambs exposed to asphyxia by partial umbilical cord occlusion. Am J Obstet Gynecol 178: 24–32. doi: 10.1016/s0002-9378(98)70621-0
[17]
Hagberg H, Peebles D, Mallard C (2002) Models of white matter injury: comparison of infectious, hypoxic-ischemic, and excitotoxic insults. Ment Retard Dev Disabil Res Rev 8: 30–38. doi: 10.1002/mrdd.10007
[18]
Barlow RM (1969) The foetal sheep: morphogenesis of the nervous system and histochemical aspects of myelination. J Comp Neurol 135: 249–262. doi: 10.1002/cne.901350302
[19]
Drury PP, Bennet L, Booth LC, Davidson JO, Wassink G, et al. (2012) Maturation of the mitochondrial redox response to profound asphyxia in fetal sheep. PLoS One 7: e39273. doi: 10.1371/journal.pone.0039273
[20]
Drury PP, Booth LC, Bennet L, Davidson JO, Wibbens B, et al. (2013) Dopamine infusion for post-resuscitation blood pressure support after profound asphyxia in near-term fetal sheep. Exp Physiol 98: 699–709. doi: 10.1113/expphysiol.2012.069989
[21]
Dunnihoo DR, Quilligan EJ (1973) Carotid blood flow distribution in the in utero sheep fetus. Am J Obstet Gynecol 116: 648–656.
[22]
van Bel F, Roman C, Klautz RJ, Teitel DF, Rudolph AM (1994) Relationship between brain blood flow and carotid arterial flow in the sheep fetus. Pediatr Res 35: 329–333. doi: 10.1203/00006450-199403000-00011
[23]
Bennet L, Rossenrode S, Gunning MI, Gluckman PD, Gunn AJ (1999) The cardiovascular and cerebrovascular responses of the immature fetal sheep to acute umbilical cord occlusion. J Physiol 517: 247–257. doi: 10.1111/j.1469-7793.1999.0247z.x
[24]
Gonzalez H, Hunter CJ, Bennet L, Power GG, Gunn AJ (2005) Cerebral oxygenation during post-asphyxial seizures in near-term fetal sheep. J Cereb Blood Flow Metab 25: 911–918. doi: 10.1038/sj.jcbfm.9600087
[25]
Lawler FH, Brace RA (1982) Fetal and maternal arterial pressures and heart rates: histograms, correlations, and rhythms. Am J Physiol 243: R433–R444.
[26]
Williams CE, Gunn A, Gluckman PD (1991) Time course of intracellular edema and epileptiform activity following prenatal cerebral ischemia in sheep. Stroke 22: 516–521. doi: 10.1161/01.str.22.4.516
[27]
Wibbens B, Westgate J, Bennet L, Roelfsema V, Gunn AJ. The relationship between changes in the ST complex and the development of hypotension during prolonged asphyxia in the near term fetal sheep; 2001; Auckland, New Zealand.
[28]
Bennet L, Roelfsema V, George S, Dean JM, Emerald BS, et al. (2007) The effect of cerebral hypothermia on white and grey matter injury induced by severe hypoxia in preterm fetal sheep. J Physiol 578: 491–506. doi: 10.1113/jphysiol.2006.119602
[29]
Gluckman PD, Parsons Y (1983) Stereotaxic method and atlas for the ovine fetal forebrain. J Dev Physiol 5: 101–128.
[30]
Scher MS, Hamid MY, Steppe DA, Beggarly ME, Painter MJ (1993) Ictal and interictal electrographic seizure durations in preterm and term neonates. Epilepsia 34: 284–288. doi: 10.1111/j.1528-1157.1993.tb02412.x
[31]
Glass HC, Nash KB, Bonifacio SL, Barkovich AJ, Ferriero DM, et al.. (2011) Seizures and magnetic resonance imaging-detected brain injury in newborns cooled for hypoxic-ischemic encephalopathy. J Pediatr 159: 731–735 e731.
[32]
Lynch NE, Stevenson NJ, Livingstone V, Murphy BP, Rennie JM, et al. (2012) The temporal evolution of electrographic seizure burden in neonatal hypoxic ischemic encephalopathy. Epilepsia 53: 549–557. doi: 10.1111/j.1528-1167.2011.03401.x
[33]
Bjorkman ST, Miller SM, Rose SE, Burke C, Colditz PB (2010) Seizures are associated with brain injury severity in a neonatal model of hypoxia-ischemia. Neuroscience 166: 157–167. doi: 10.1016/j.neuroscience.2009.11.067
[34]
Haaland K, Loberg EM, Steen PA, Thoresen M (1997) Posthypoxic hypothermia in newborn piglets. Pediatr Res 41: 505–512. doi: 10.1203/00006450-199704000-00009
[35]
Thorngren-Jerneck K, Ley D, Hellstrom-Westas L, Hernandez-Andrade E, Lingman G, et al. (2001) Reduced postnatal cerebral glucose metabolism measured by PET after asphyxia in near term fetal lambs. J Neurosci Res 66: 844–850. doi: 10.1002/jnr.10051
[36]
Wibbens B, Bennet L, Westgate JA, de Haan HH, Wassink G, et al. (2007) Pre-existing hypoxia is associated with a delayed but more sustained rise in T/QRS ratio during prolonged umbilical cord occlusion in near-term fetal sheep. Am J Physiol Regul Integr Comp Physiol 293: R1287–1293. doi: 10.1152/ajpregu.00373.2007
[37]
Thornberg E, Thiringer K, Hagberg H, Kjellmer I (1995) Neuron specific enolase in asphyxiated newborns: association with encephalopathy and cerebral function monitor trace. Arch Dis Child Fetal Neonatal Ed 72: F39–F42. doi: 10.1136/fn.72.1.f39
[38]
Yeo CL, Tudehope DI (1994) Outcome of resuscitated apparently stillborn infants: a ten year review. J Paediatr Child Health 30: 129–133. doi: 10.1111/j.1440-1754.1994.tb00596.x
[39]
Lopez Bernal A (2003) Mechanisms of labour–biochemical aspects. BJOG 110 Suppl 2039–45. doi: 10.1046/j.1471-0528.2003.00023.x
[40]
Wibbens B, Westgate JA, Bennet L, Roelfsema V, de Haan HH, et al. (2005) Profound hypotension and associated ECG changes during prolonged cord occlusion in the near term fetal sheep. Am J Obstet Gynecol 193: 803–810. doi: 10.1016/j.ajog.2005.01.058
[41]
Gunn AJ, Maxwell L, de Haan HH, Bennet L, Williams CE, et al. (2000) Delayed hypotension and subendocardial injury after repeated umbilical cord occlusion in near-term fetal lambs. Am J Obstet Gynecol 183: 1564–1572. doi: 10.1067/mob.2000.108084
[42]
Shah PS, Perlman M (2009) Time courses of intrapartum asphyxia: neonatal characteristics and outcomes. Am J Perinatol 26: 39–44. doi: 10.1055/s-0028-1095185
[43]
Jensen EC, Bennet L, Fraser M, Power GG, Hunter CJ, et al. (2010) Adenosine A1 receptor mediated suppression of adrenal activity in near-term fetal sheep. Am J Physiol Regul Integr Comp Physiol 298: R700–R706. doi: 10.1152/ajpregu.00474.2009
Nevander G, Ingvar M, Auer R, Siesjo BK (1985) Status epilepticus in well-oxygenated rats causes neuronal necrosis. Ann Neurol 18: 281–290. doi: 10.1002/ana.410180303
[46]
McBride MC, Laroia N, Guillet R (2000) Electrographic seizures in neonates correlate with poor neurodevelopmental outcome. Neurology 55: 506–513. doi: 10.1212/wnl.55.4.506
[47]
Pisani F, Cerminara C, Fusco C, Sisti L (2007) Neonatal status epilepticus vs recurrent neonatal seizures: clinical findings and outcome. Neurology 69: 2177–2185. doi: 10.1212/01.wnl.0000295674.34193.9e
[48]
Miller SP, Weiss J, Barnwell A, Ferriero DM, Latal-Hajnal B, et al. (2002) Seizure-associated brain injury in term newborns with perinatal asphyxia. Neurology 58: 542–548. doi: 10.1212/wnl.58.4.542
Dawes GS, Mott JC, Shelley HJ (1959) The importance of cardiac glycogen for the maintenance of life in foetal lambs and newborn animals during anoxia. J Physiol 146: 516–538.
[51]
Williams CE, Gunn AJ, Synek B, Gluckman PD (1990) Delayed seizures occurring with hypoxic-ischemic encephalopathy in the fetal sheep. Pediatr Res 27: 561–565. doi: 10.1203/00006450-199006000-00004
[52]
Davidson JO, Green CR, Nicholson LF, Bennet L, Gunn AJ (2012) Deleterious effects of high dose connexin 43 mimetic peptide infusion after cerebral ischaemia in near-term fetal sheep. Int J Mol Sci 13: 6303–6319. doi: 10.3390/ijms13056303
[53]
Davidson JO, Green CR, Nicholson LF, Bennet L, Gunn AJ (2013) Connexin hemichannel blockade is neuroprotective after, but not during, global cerebral ischemia in near-term fetal sheep. Exp Neurol 248: 301–308. doi: 10.1016/j.expneurol.2013.06.026
[54]
Mallard EC, Williams CE, Gunn AJ, Gunning MI, Gluckman PD (1993) Frequent episodes of brief ischemia sensitize the fetal sheep brain to neuronal loss and induce striatal injury. Pediatr Res 33: 61–65. doi: 10.1203/00006450-199301000-00013
[55]
Geddes R, Vannucci RC, Vannucci SJ (2001) Delayed cerebral atrophy following moderate hypoxia-ischemia in the immature rat. Dev Neurosci 23: 180–185. doi: 10.1159/000046140